There were three hailstorms in Shandong Province, caused by a same northeast cold eddy situation on 1 June 2002. Cloud-to-ground (CG) flashes occurring in the weather event were observed by Shandong Lightning Detect...There were three hailstorms in Shandong Province, caused by a same northeast cold eddy situation on 1 June 2002. Cloud-to-ground (CG) flashes occurring in the weather event were observed by Shandong Lightning Detection Network (SLDN), which consists of 10 sensors covering all over Shandong Province. The temporal and spatial distributions of CG lightning are investigated for the three hailstorms by using the data from SLDN, Doppler radar and satellite. The results show that different thunderstorms present different lightning features even if under the same synoptic situation. The percentage of positive CG lightning is very high during the period of hail falling. CG flashes mainly occurred in the region with a cloud top brightness temperature lower than -50℃. Negative CG flashes usually clustered in the lower temperature region and tended to occur in the region with maximum temperature gradient, while the positive ones usually spread discretely. Negative CG flashes usually occurred in intense echo regions with reflectivity greater than 50 dBz, while the positive CG flashes often occurred in weak and stable echo regions (10-30 dBz) or cloud anvils, although they can be observed in strong convective regions sometimes. Almost all haft falling took place in the stage with active positive flashes, and the peak positive flash rate is a little prior to the hail events. The thunderstorm could lead to disastrous weather when positive CG lightning activities occur in cluster. Severe thunderstorms sometimes present a low flash rate at its vigorous stage, which is probably caused by the "mechanism of chargeregion lift" through investigating the reflectivity evolution. Combined with the total lightning (intracloud and CG) data obtained by LIS onboard TRMM, the phenomenon of high ratio of intracloud flash to CG flash in severe hailstorm has been discussed. The competition of the same charge sources between different lightning types can also be helpful for explaining the cause of low CG lightning activities 展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos.40505001 and 40325013,and Meteorological Foundation of Shandong Province (2005sdqxj01).
文摘There were three hailstorms in Shandong Province, caused by a same northeast cold eddy situation on 1 June 2002. Cloud-to-ground (CG) flashes occurring in the weather event were observed by Shandong Lightning Detection Network (SLDN), which consists of 10 sensors covering all over Shandong Province. The temporal and spatial distributions of CG lightning are investigated for the three hailstorms by using the data from SLDN, Doppler radar and satellite. The results show that different thunderstorms present different lightning features even if under the same synoptic situation. The percentage of positive CG lightning is very high during the period of hail falling. CG flashes mainly occurred in the region with a cloud top brightness temperature lower than -50℃. Negative CG flashes usually clustered in the lower temperature region and tended to occur in the region with maximum temperature gradient, while the positive ones usually spread discretely. Negative CG flashes usually occurred in intense echo regions with reflectivity greater than 50 dBz, while the positive CG flashes often occurred in weak and stable echo regions (10-30 dBz) or cloud anvils, although they can be observed in strong convective regions sometimes. Almost all haft falling took place in the stage with active positive flashes, and the peak positive flash rate is a little prior to the hail events. The thunderstorm could lead to disastrous weather when positive CG lightning activities occur in cluster. Severe thunderstorms sometimes present a low flash rate at its vigorous stage, which is probably caused by the "mechanism of chargeregion lift" through investigating the reflectivity evolution. Combined with the total lightning (intracloud and CG) data obtained by LIS onboard TRMM, the phenomenon of high ratio of intracloud flash to CG flash in severe hailstorm has been discussed. The competition of the same charge sources between different lightning types can also be helpful for explaining the cause of low CG lightning activities