多源光谱分析技术被用于鱼油品牌快速无损鉴别。采用可见光谱分析技术、短波近红外光谱分析技术、长波近红外光谱分析技术、中红外光谱分析技术和核磁共振光谱分析技术采集了7种不同品牌的鱼油的光谱特征,并应用偏最小二乘判别分析法(pa...多源光谱分析技术被用于鱼油品牌快速无损鉴别。采用可见光谱分析技术、短波近红外光谱分析技术、长波近红外光谱分析技术、中红外光谱分析技术和核磁共振光谱分析技术采集了7种不同品牌的鱼油的光谱特征,并应用偏最小二乘判别分析法(partial least squares discrimination analysis,PLS-DA)和最小二乘支持向量机(least-squares support vector machine,LS-SVM)建立判别模型并比较判别结果。基于长波近红外光谱的PLS-DA模型和LS-SVM模型取得了最高识别正确率,建模集和预测集识别正确率均达到100%。采用中红外光谱和核磁共振谱分别建立的LS-SVM模型,也可以获得100%的判别正确率。而可见光谱和短波近红外光谱则判别准确率较差。且LS-SVM算法较PLS-DA更加适合用于建立光谱数据和鱼油品牌之间的判别模型。研究结果表面长波近红外光谱技术能够有效判别不同鱼油的品牌,为将来鱼油品质鉴定便携式仪器的开发提供了技术支持和理论依据。展开更多
文摘多源光谱分析技术被用于鱼油品牌快速无损鉴别。采用可见光谱分析技术、短波近红外光谱分析技术、长波近红外光谱分析技术、中红外光谱分析技术和核磁共振光谱分析技术采集了7种不同品牌的鱼油的光谱特征,并应用偏最小二乘判别分析法(partial least squares discrimination analysis,PLS-DA)和最小二乘支持向量机(least-squares support vector machine,LS-SVM)建立判别模型并比较判别结果。基于长波近红外光谱的PLS-DA模型和LS-SVM模型取得了最高识别正确率,建模集和预测集识别正确率均达到100%。采用中红外光谱和核磁共振谱分别建立的LS-SVM模型,也可以获得100%的判别正确率。而可见光谱和短波近红外光谱则判别准确率较差。且LS-SVM算法较PLS-DA更加适合用于建立光谱数据和鱼油品牌之间的判别模型。研究结果表面长波近红外光谱技术能够有效判别不同鱼油的品牌,为将来鱼油品质鉴定便携式仪器的开发提供了技术支持和理论依据。