Rising concern in environmental issues on global scale has made energy saving in powered equipment a very important subject.In order to improve the energy efficiency and driving range of a motor hoist,a regenerative b...Rising concern in environmental issues on global scale has made energy saving in powered equipment a very important subject.In order to improve the energy efficiency and driving range of a motor hoist,a regenerative braking system is designed and discussed.The system takes a unique ultracapacitor-only approach to energy storage system.The bi-directional bride DC?DC converter which regulates current flow to and from the ultracapacitor operates in two modes:boost and buck,depending on the direction of the flow.In order to provide constant input and output current at the ultracapacitor,this system uses a double proportional-integral(PI) control strategy in regulating the duty cycle of PWM to the DC?DC converter.The permanent magnet synchronous motor(PWSM) drive system is also studied.The space vector pulse width modulation(SVPWM) technique,along with a two-closed-loop vector control model,is adopted after detailed analysis of PMSM characteristics.The overall model and control strategy for this regenerative braking system is ultimately built and simulated under the MATLAB and Simulink environment.A test platform is built to obtain experimental results.Analysis of the results reveals that more than half of the gravitational potential energy can be recovered by this system.Simulation and experimentation results testify the validity of the double PI control strategy for interface circuit of ultracapacitor and SVPWM strategy for PMSM.展开更多
为提高城市电动客车并联再生制动策略的制动稳定性与制动能回收量,分析了电动客车制动稳定性要求对机电并行再生制动时制动能回收率的影响。根据欧洲经济委员会第13号制动法规(regulation No.13of the Economic Commission for Europe,...为提高城市电动客车并联再生制动策略的制动稳定性与制动能回收量,分析了电动客车制动稳定性要求对机电并行再生制动时制动能回收率的影响。根据欧洲经济委员会第13号制动法规(regulation No.13of the Economic Commission for Europe,简称ECE R13)要求,利用广义制动力分配线与广义理想制动力分配曲线的位置关系,结合电动客车在典型城市工况下的运行特征,将机电并行制动的制动强度确定在0.1与0.3之间;在机电并行制动时,利用惯性比例阀将机械制动系制动力分配比调整为ECE R13法规许可的最大值。对advisor2002电动汽车仿真软件进行了二次开发,建立了后驱型电动汽车仿真模型。仿真表明新策略使城市电动客车在典型城市工况下的制动能回收量得到了明显提高。展开更多
基金supported by National Key Technology Research and Development Program of China (Grant No. 2007BAF10B00)
文摘Rising concern in environmental issues on global scale has made energy saving in powered equipment a very important subject.In order to improve the energy efficiency and driving range of a motor hoist,a regenerative braking system is designed and discussed.The system takes a unique ultracapacitor-only approach to energy storage system.The bi-directional bride DC?DC converter which regulates current flow to and from the ultracapacitor operates in two modes:boost and buck,depending on the direction of the flow.In order to provide constant input and output current at the ultracapacitor,this system uses a double proportional-integral(PI) control strategy in regulating the duty cycle of PWM to the DC?DC converter.The permanent magnet synchronous motor(PWSM) drive system is also studied.The space vector pulse width modulation(SVPWM) technique,along with a two-closed-loop vector control model,is adopted after detailed analysis of PMSM characteristics.The overall model and control strategy for this regenerative braking system is ultimately built and simulated under the MATLAB and Simulink environment.A test platform is built to obtain experimental results.Analysis of the results reveals that more than half of the gravitational potential energy can be recovered by this system.Simulation and experimentation results testify the validity of the double PI control strategy for interface circuit of ultracapacitor and SVPWM strategy for PMSM.
文摘为提高城市电动客车并联再生制动策略的制动稳定性与制动能回收量,分析了电动客车制动稳定性要求对机电并行再生制动时制动能回收率的影响。根据欧洲经济委员会第13号制动法规(regulation No.13of the Economic Commission for Europe,简称ECE R13)要求,利用广义制动力分配线与广义理想制动力分配曲线的位置关系,结合电动客车在典型城市工况下的运行特征,将机电并行制动的制动强度确定在0.1与0.3之间;在机电并行制动时,利用惯性比例阀将机械制动系制动力分配比调整为ECE R13法规许可的最大值。对advisor2002电动汽车仿真软件进行了二次开发,建立了后驱型电动汽车仿真模型。仿真表明新策略使城市电动客车在典型城市工况下的制动能回收量得到了明显提高。