In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different openin...In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different opening angles were analyzed as well as the flow field's variation laws. Six cases were researched,taking opening angles 45°,60°,75°,80°,85° and 90° respectively.Three-dimensional Reynolds-average Navier-Stokes equation combined with k-ε turbulence model was utilized. The control equation was discretized and solved by finite volume method.SIMPLE method was also considered to couple the pressure and velocity fields and search the numeric solutions. Conclusions can be achieved from the results which are shown as follows. When the opening angle increases from 45° to 75°,the aerodynamic forces and the central area with larger pressure increase fast,and the flow field distribution changes greatly; when the opening angle increases from75° to 90°,the aerodynamic forces and the central area with larger pressure increase slowly, and the flow field distribution changes slightly; considering train boundary and opening performance of the wind resistance brake mechanism,the opening angle should be 75°.展开更多
基金the New Type of Non-Adhesion Braking-Aerodynamics Braking,Ministry of Railw ays,China(No.2860235018)the Fundamental Research Funds for the Central Universities,China(No.2860219022)
文摘In order to get the relationship between aerodynamic brake effect and the opening angle,based on a high-speed train model in CFD software FLUENT,the aerodynamic force properties from brake panels with different opening angles were analyzed as well as the flow field's variation laws. Six cases were researched,taking opening angles 45°,60°,75°,80°,85° and 90° respectively.Three-dimensional Reynolds-average Navier-Stokes equation combined with k-ε turbulence model was utilized. The control equation was discretized and solved by finite volume method.SIMPLE method was also considered to couple the pressure and velocity fields and search the numeric solutions. Conclusions can be achieved from the results which are shown as follows. When the opening angle increases from 45° to 75°,the aerodynamic forces and the central area with larger pressure increase fast,and the flow field distribution changes greatly; when the opening angle increases from75° to 90°,the aerodynamic forces and the central area with larger pressure increase slowly, and the flow field distribution changes slightly; considering train boundary and opening performance of the wind resistance brake mechanism,the opening angle should be 75°.