Ginsenoside Rgl inhibits oxidation, aging and ce this study, we pretreated rat brain tissue sections I apoptosis, and improves cognitive function. In with ginsenoside Rgl, and established brain slice models of Alzhei...Ginsenoside Rgl inhibits oxidation, aging and ce this study, we pretreated rat brain tissue sections I apoptosis, and improves cognitive function. In with ginsenoside Rgl, and established brain slice models of Alzheimer's disease induced by okadaic acid. The results revealed that ginsenoside Rgl pretreatment suppressed the increase in phosphorylated Tau protein expression induced by incubation with okadaic acid, and reduced brain-derived neurotrophic factor expression. These results suggest that ginsenoside Rgl upregulates brain-derived neurotrophic factor expression and inhibits Tau protein phosphorylation in brain slices from a rat model of Alzheimer's disease.展开更多
Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been developed as a new method of treat- ing diseases of the peripheral nervous system. While netrin-1 is a critical molecule for axonal path finding...Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been developed as a new method of treat- ing diseases of the peripheral nervous system. While netrin-1 is a critical molecule for axonal path finding and nerve growth, it may also affect vascular network formation. Here, we investigated the effect of transplanting BMSCs that produce netrin-1 in a rat model of sciatic nerve crush injury. We introduced a sciatic nerve crush injury, and then injected 1×10^6 BMSCs infected by a recombinant adenovirus expressing netrin-1 Ad5-Netrin-l-EGFP or culture medium into the injured part in the next day. At day 7, 14 and 28 after injection, we measured motor nerve con- duction and detected mRNA expressions of netrin-1 receptors UNC5B and Deleted in Colorectal Cancer (DCC), and neurotrophic factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) by real-time PCR. We also detected protein expressions of BDNF and NGF by Western blotting assays and examined BMSCs that incorporated into myelin and vascellum. The results showed that BMSCs infected by AdS-Netrin- 1-EGFP significantly improved the function of the sciatic nerve, and led to increased expression of BDNF and NGF (P〈0.05). Moreover, 28 days after injury, more Schwann cells were found in BMSCs infected by AdS- Netrin-l-EGFP compared to control BMSCs. In conclusion, transplantation of BMSCs that produce netrin-1 improved the function of the sciatic nerve after injury. This method may be a new treatment of nerve injury.展开更多
The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-d...The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 Ix, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.展开更多
基金funded by the Scientific and Technological Key Task Program, No. 2007K16-07(5)the Program of Administration of Traditional Chinese Medicine of Shaanxi Province,No.2005030
文摘Ginsenoside Rgl inhibits oxidation, aging and ce this study, we pretreated rat brain tissue sections I apoptosis, and improves cognitive function. In with ginsenoside Rgl, and established brain slice models of Alzheimer's disease induced by okadaic acid. The results revealed that ginsenoside Rgl pretreatment suppressed the increase in phosphorylated Tau protein expression induced by incubation with okadaic acid, and reduced brain-derived neurotrophic factor expression. These results suggest that ginsenoside Rgl upregulates brain-derived neurotrophic factor expression and inhibits Tau protein phosphorylation in brain slices from a rat model of Alzheimer's disease.
基金supported by grants from Jiangsu Planned Projects for Postdoctoral Research Funds, Nanjing Medical Technology Development Project (No.ZKX08014)Nanjing Medical Science and Technique Development Foundation,National Natural Science Foundation of China(No.81200594)
文摘Transplantation of bone marrow mesenchymal stem cells (BMSCs) has been developed as a new method of treat- ing diseases of the peripheral nervous system. While netrin-1 is a critical molecule for axonal path finding and nerve growth, it may also affect vascular network formation. Here, we investigated the effect of transplanting BMSCs that produce netrin-1 in a rat model of sciatic nerve crush injury. We introduced a sciatic nerve crush injury, and then injected 1×10^6 BMSCs infected by a recombinant adenovirus expressing netrin-1 Ad5-Netrin-l-EGFP or culture medium into the injured part in the next day. At day 7, 14 and 28 after injection, we measured motor nerve con- duction and detected mRNA expressions of netrin-1 receptors UNC5B and Deleted in Colorectal Cancer (DCC), and neurotrophic factors brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) by real-time PCR. We also detected protein expressions of BDNF and NGF by Western blotting assays and examined BMSCs that incorporated into myelin and vascellum. The results showed that BMSCs infected by AdS-Netrin- 1-EGFP significantly improved the function of the sciatic nerve, and led to increased expression of BDNF and NGF (P〈0.05). Moreover, 28 days after injury, more Schwann cells were found in BMSCs infected by AdS- Netrin-l-EGFP compared to control BMSCs. In conclusion, transplantation of BMSCs that produce netrin-1 improved the function of the sciatic nerve after injury. This method may be a new treatment of nerve injury.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, No. 2012-0000301
文摘The hippocampus is a brain region responsible for learning and memory functions. The purpose of this study was to investigate the effects of low-intensity exercise and bright light exposure on neurogenesis and brain-derived neurotrophic factor expression in adult rat hippocampus. Male Sprague-Dawley rats were randomly assigned to control, exercise, light, or exercise + light groups (n = 9 per group). The rats in the exercise group were subjected to treadmill exercise (5 days per week, 30 minutes per day, over a 4-week period), the light group rats were irradiated (5 days per week, 30 minutes per day, 10 000 Ix, over a 4-week period), the exercise + light group rats were subjected to treadmill exercise in combination with bright light exposure, and the control group rats remained sedentary over a 4-week period. Compared with the control group, there was a significant increase in neurogenesis in the hippocampal dentate gyrus of rats in the exercise, light, and exercise + light groups. Moreover, the expression level of brain-derived neurotrophic factor in the rat hippocampal dentate gyrus was significantly higher in the exercise group and light group than that in the control group. Interestingly, there was no significant difference in brain-derived neurotrophic factor expression between the control group and exercise + light group. These results indicate that low-intensity treadmill exercise (first 5 minutes at a speed of 2 m/min, second 5 minutes at a speed of 5 m/min, and the last 20 minutes at a speed of 8 m/min) or bright-light exposure therapy induces positive biochemical changes in the brain. In view of these findings, we propose that moderate exercise or exposure to sunlight during childhood can be beneficial for neural development.