Exploring the structural topology of genome-based large-scale metabolic network is essential for in- vestigating possible relations between structure and functionality.Visualization would be helpful for obtaining imme...Exploring the structural topology of genome-based large-scale metabolic network is essential for in- vestigating possible relations between structure and functionality.Visualization would be helpful for obtaining immediate information about structural organization.In this work,metabolic networks of 75 organisms were investigated from a topological point of view.A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks.The revealed topological pattern helps to design more efficient algorithm specifically for metabolic networks.This coarse- grained graph also visualizes the vulnerable connections in the network,and thus could have important implication for disease studies and drug target identifications.In addition,analysis on the reciprocal links and main cores in the GSC part of bow-tie also reveals that the bow-tie structure of metabolic networks has its own intrinsic and significant features which are significantly different from those of random networks.展开更多
随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面...随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面无人平台系统安全分析方法。围绕遥控操作地面无人平台系统安全,通过STPA方法识别UGV系统中的不安全控制行为及其潜在风险,并利用Bow-Tie模型分析从损失致因场景到可能事故后果的事件链,得到风险传播路径和风险扩散路径。最终,基于Bow-Tie分析结果确定主被动安全分级控制措施,并通过自主安全控制器实现了系统安全管理。展开更多
基金Supported in part by the Ministry of Science and Technology of China(Grant Nos.2003CB715900 and 2004CB720103)National Natural Science Foundation of China(Grant Nos.30500107 and 30670953)Science and Technology Commission of Shanghai Municipality(Grant Nos.04DZ19850 and 04DZ14005)
文摘Exploring the structural topology of genome-based large-scale metabolic network is essential for in- vestigating possible relations between structure and functionality.Visualization would be helpful for obtaining immediate information about structural organization.In this work,metabolic networks of 75 organisms were investigated from a topological point of view.A spread bow-tie model was proposed to give a clear visualization of the bow-tie structure for metabolic networks.The revealed topological pattern helps to design more efficient algorithm specifically for metabolic networks.This coarse- grained graph also visualizes the vulnerable connections in the network,and thus could have important implication for disease studies and drug target identifications.In addition,analysis on the reciprocal links and main cores in the GSC part of bow-tie also reveals that the bow-tie structure of metabolic networks has its own intrinsic and significant features which are significantly different from those of random networks.
文摘随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面无人平台系统安全分析方法。围绕遥控操作地面无人平台系统安全,通过STPA方法识别UGV系统中的不安全控制行为及其潜在风险,并利用Bow-Tie模型分析从损失致因场景到可能事故后果的事件链,得到风险传播路径和风险扩散路径。最终,基于Bow-Tie分析结果确定主被动安全分级控制措施,并通过自主安全控制器实现了系统安全管理。