Bottlenecks in urban traffic network are sticking points in restricting network collectivity traffic efficiency. To identify network bottlenecks effectively is a foundational work for improving network traffic conditi...Bottlenecks in urban traffic network are sticking points in restricting network collectivity traffic efficiency. To identify network bottlenecks effectively is a foundational work for improving network traffic condition and preventing traffic congestion. In this paper, a congestion propagation model of urban network traffic is proposed based on the cell transmission model (CTM). The proposed model includes a link model, which describes flow propagation on links, and a node model, which represents link-to-link flow propagation. A new method of estimating average journey velocity (AJV) of both link and network is developed to identify network congestion bottlenecks. A numerical example is studied in Sioux Falls urban traffic network. The proposed model is employed in simulating network traffic propagation and congestion bottleneck identification under different traffic demands. The simulation results show that continual increase of traffic demand is an immediate factor in network congestion bottleneck emergence and increase as well as reducing network collectivity capability. Whether a particular link will become a bottleneck is mainly determined by its position in network, its traffic flow (attributed to different OD pairs) component, and network traffic demand.展开更多
Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mo...Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mon challenges in wireless mobile networks, such as high packet loss rate, medium access competition, unstable wireless bandwidth, and dynamic topology, etc., but also suffers from performance degradation due to traffic congestion at the Road-Side Units (RSUs) that connect the wireline and wireless networks. In order to address the challenging issues related to reliable TCP transmissions in infrastruc- ture based vehicular networks, we propose an RSU based TCP (R-TCP) scheme. For wireline source nodes, R-TCP adopts a novel flow control mechanism to adjust transmission rates according to the status of bottleneck link. Specifically, during the short wireless connec- tion time in Infrastructure based vehicular net- works, R-TCP quickly chooses an ideal trans- mission rate for data transmissions instead of activating the slow start algorithm after the connection is established, and successfully avoids the oscillation of the transmission rate. Simulation results show that R-TCP achieves great advantages than some relate proposals in terms of throughput, end-to-end delay, and packet loss rate.展开更多
基金the National Basic Research Program of China (Grant No.2006CB705500)the National Natural Science Foundation of China (Grant No.70631001)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidate of Beijing Jiaotong University (Grant No.48040)
文摘Bottlenecks in urban traffic network are sticking points in restricting network collectivity traffic efficiency. To identify network bottlenecks effectively is a foundational work for improving network traffic condition and preventing traffic congestion. In this paper, a congestion propagation model of urban network traffic is proposed based on the cell transmission model (CTM). The proposed model includes a link model, which describes flow propagation on links, and a node model, which represents link-to-link flow propagation. A new method of estimating average journey velocity (AJV) of both link and network is developed to identify network congestion bottlenecks. A numerical example is studied in Sioux Falls urban traffic network. The proposed model is employed in simulating network traffic propagation and congestion bottleneck identification under different traffic demands. The simulation results show that continual increase of traffic demand is an immediate factor in network congestion bottleneck emergence and increase as well as reducing network collectivity capability. Whether a particular link will become a bottleneck is mainly determined by its position in network, its traffic flow (attributed to different OD pairs) component, and network traffic demand.
基金supported in part by Fundamental Research Funds for the Central Universities of China under Grant(N140405004) partly by National Natural Science Foundation of China(61373159)+1 种基金partly by Educational Committee of Liaoning Province science and technology research projects under Grant (L2013096)partly by Key Laboratory Project Funds of Shenyang Ligong University (4771004kfs03)
文摘Transmission Control Protocol (TCP) in infrastructure based vehicular net- works is dedicated to support reliable Intemet services for mobile users. However, an end-to- end TCP flow not only experiences some com- mon challenges in wireless mobile networks, such as high packet loss rate, medium access competition, unstable wireless bandwidth, and dynamic topology, etc., but also suffers from performance degradation due to traffic congestion at the Road-Side Units (RSUs) that connect the wireline and wireless networks. In order to address the challenging issues related to reliable TCP transmissions in infrastruc- ture based vehicular networks, we propose an RSU based TCP (R-TCP) scheme. For wireline source nodes, R-TCP adopts a novel flow control mechanism to adjust transmission rates according to the status of bottleneck link. Specifically, during the short wireless connec- tion time in Infrastructure based vehicular net- works, R-TCP quickly chooses an ideal trans- mission rate for data transmissions instead of activating the slow start algorithm after the connection is established, and successfully avoids the oscillation of the transmission rate. Simulation results show that R-TCP achieves great advantages than some relate proposals in terms of throughput, end-to-end delay, and packet loss rate.