The objective of this work was to fabricate a rigid,resorbable and osteoconductive scaffold by mimicking the hierarchical structure of the cortical bone.Aligned peptide-functionalize nanofiber microsheets were generat...The objective of this work was to fabricate a rigid,resorbable and osteoconductive scaffold by mimicking the hierarchical structure of the cortical bone.Aligned peptide-functionalize nanofiber microsheets were generated with calcium phosphate(CaP)content similar to that of the natural cortical bone.Next,the CaP-rich fibrous microsheets were wrapped around a microneedle to form a laminated microtube mimicking the structure of an osteon.Then,a set of the osteon-mimetic microtubes were assembled around a solid rod and the assembly was annealed to fuse the microtubes and form a shell.Next,an array of circular microholes were drilled on the outer surface of the shell to generate a cortical bone-like scaffold with an interconnected network of Haversian-and Volkmann-like microcanals.The CaP content,porosity and density of the bone-mimetic microsheets were 240 wt%,8%and 1.9 g/ml,respectively,which were close to that of natural cortical bone.The interconnected network of microcanals in the fused microtubes increased permeability of a model protein in the scaffold.The cortical scaffold induced osteogenesis and vasculogenesis in the absence of bone morphogenetic proteins upon seeding with human mesenchymal stem cells and endothelial colony-forming cells.The localized and timed-release of morphogenetic factors significantly increased the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells in the cortical scaffold.The cortical bonemimetic nature of the cellular construct provided balanced rigidity,resorption rate,osteoconductivity and nutrient diffusivity to support vascularization and osteogenesis.展开更多
Background: Recently, local sustained-release antibiotics systems have been developed because they can increase local loci of concentrated antibiotics without increasing the plasma concentration, and thereby effectiv...Background: Recently, local sustained-release antibiotics systems have been developed because they can increase local loci of concentrated antibiotics without increasing the plasma concentration, and thereby effectively decrease any systemic toxicity and side effects. A vancomycin-loaded bone-like hydroxyapatite/poly-amino acid (V-BHA/PAA) bony scaffold was successfully fabricated with vancomycin-loaded poly lactic-co-glycolic acid microspheres and BHA/PAA, which was demonstrated to exhibit both porosity and perfect biodegradability. The aim of this study was to systematically evaluate the biosafety of this novel scaffold by conducting toxicity tests in vitro and in vivo. Methods: According to the ISO rules for medical implant biosafety, for in vitro tests, the scaffold was incubated with L929 fibroblasts or rabbit noncoagulant blood, with simultaneous creation of positive control and negative control groups. The growth condition ofL929 cells and hemolytic ratio were respectively evaluated after various incubation periods. For in vivo tests, a chronic osteomyelitis model involving the right proximal tibia of New Zealand white rabbits was established. After bacterial identification, the drug-loaded scaffold, drug-unloaded BHA/PAA, and poly (methyl methacrylate) were implanted, and a blank control group was also set up. Subsequently, the in vivo blood drug concentrations were measured, and the kidney and liver functions were evaluated. Results: In the in vitro tests, the cytotoxicity grades of V-BHA/PAA and BHA/PAA-based on the relative growth rate were all below 1. The hemolysis ratios of V-BHA/PAA and BHA/PAA were 2.27% and 1.42%, respectively, both below 5%. In the in vivo tests, the blood concentration of vancomycin after implantation of V-BHA/PAA was measured at far below its toxic concentration (60 mg/L), and the function and histomorphology of the liver and kidney were all normal. Conclusion: According to ISO standards, the V-BHA/PAA scaffold is considered to have sufficient safety for cl展开更多
The effect of iron substitution on the bioactivity of hydroxyapatite (HAp) under the physiological conditions was investigated. Five samples of iron doped hydroxyapatite (FeHAp) with different iron concentrations (0, ...The effect of iron substitution on the bioactivity of hydroxyapatite (HAp) under the physiological conditions was investigated. Five samples of iron doped hydroxyapatite (FeHAp) with different iron concentrations (0, 0.05, 0.1, 0.2, and 0.3 mol%) were synthesized by wet chemical method. The formation of bone-like apatite layer on the surface of the samples was detected using X-ray diffraction (XRD), Fourier transforms infrared (FTIR) and scanning electron microscope techniques. The changes of the pH of SBF medium were measured at pre-determined time intervals using a pH meter. The dissolution of calcium, phosphorus and iron ions in SBF medium was determined by single beam scanning spectrophotometer. XRD and FTIR results exhibit the formation of carbonate apatite layer on the surface of the immersed samples, which increase with the increase of iron content. SEM results showed agglomeration of small crystals on the surface of the immersed samples. The solubility and dissolution tests revealed that iron doped HAp samples had a higher solubility and dissolution rate than pure sample, which indicated that iron increased the bioactivity of HAp in vitro.展开更多
Bone-like hydroxyapatite ( HAp ) powders were synthesized using a reverse microemulsion method without further calcine processing. Synthesis conditions had significant effects on the formation of HAp. According to t...Bone-like hydroxyapatite ( HAp ) powders were synthesized using a reverse microemulsion method without further calcine processing. Synthesis conditions had significant effects on the formation of HAp. According to the results of XRD patterns and FFIR spectra, the obtained needle shape HAp powder with poorly crystallized and carbonate substitution was chemically and structurally similar to the human bone powders. The alkaline of emulsion was responsible for the obtained HAp without calcine route, and carbonate came from CO2 in air during preparation. By ultrasonic treatment, the morphology of HAp particles changed from spherical to needle shape for the reverse micelles broke up due to the high energy of ultrasonic.展开更多
Osteogenesis imperfecta(OI)is mainly characterized by bone fragility and Ehlers-Danlos syndrome(EDS)by connective tissue defects.Mutations in COL1A1 or COL1A2 can lead to both syndromes.OI/EDS overlap syndrome is most...Osteogenesis imperfecta(OI)is mainly characterized by bone fragility and Ehlers-Danlos syndrome(EDS)by connective tissue defects.Mutations in COL1A1 or COL1A2 can lead to both syndromes.OI/EDS overlap syndrome is mostly caused by helical mutations near the amino-proteinase cleavage site of type Ⅰ procollagen.In this study,we identified a Thai patient having OI type Ⅲ,EDS,brachydactyly,and dentinogenesis imperfecta.His dentition showed delayed eruption,early exfoliation,and severe malocclusion.For the first time,ultrastructural analysis of the tooth affected with OI/EDS showed that the tooth had enamel inversion,bonelike dentin,loss of dentinal tubules,and reduction in hardness and elasticity,suggesting severe developmental disturbance.These severe dental defects have never been reported in OI or EDS.Exome sequencing identified a novel de novo heterozygous glycine substitution,c.3296G>A,p.Gly1099Glu,in exon 49 of COL1A2.Three patients with mutations in the exon 49 of COL1A2 were previously reported to have OI with brachydactyly and intracranial hemorrhage.Notably,two of these three patients did not show hyperextensible joints and hypermobile skin,while our patient at the age of 5 years had not developed intracranial hemorrhage.Here,we demonstrate that the novel glycine substitution in the carboxyl region of alpha2(Ⅰ)collagen triple helix leads to OI/EDS with brachydactyly and severe tooth defects,expanding the genotypic and phenotypic spectra of OI/EDS overlap syndrome.展开更多
FeCrAl(f)/HA biological functionally gradient materials(FGMs) were successfully fabricated by the hot pressing technique.Scanning electron microscope(SEM),energy dispersive spectrometer(EDS) and bending strength test ...FeCrAl(f)/HA biological functionally gradient materials(FGMs) were successfully fabricated by the hot pressing technique.Scanning electron microscope(SEM),energy dispersive spectrometer(EDS) and bending strength test machine were utilized to characterize the microstructure,component,mechanical properties and the formation of the Ca-deficient apatite on the surface of these materials.The results indicate that an asymmetrical FeCrAl(f)/HA FGM,consolidating powders prepared by mixing HA with 3%–15%(volume fraction) is successfully prepared.Both of the matrix and FeCrAl fiber are integrated very tightly and bite into each other very deeply.And counter diffusion takes place to some extent in two phase interfaces.The elemental compositions of the FeCrAl(f)/HA FGM change progressively.Ca and P contents increase gradually with immersion time increasing,and thereafter approach equilibrium.The bone-like apatite layer forms on the materials surface,which possesses benign bioactivity,and the favorable biocompatibility can provide potential firm fixation between FeCrAl(f)/HA asymmetrical FGM implants and human bone.展开更多
This study aimed at exploring the effect of surface morphology of dense phosphate calcimn (Ca-P) ceramics upon the formation of bone-like apatite in static or dynamic simulated body fluid (SBF). Dense and sandblas...This study aimed at exploring the effect of surface morphology of dense phosphate calcimn (Ca-P) ceramics upon the formation of bone-like apatite in static or dynamic simulated body fluid (SBF). Dense and sandblasted calcium phosphate ceramics were immersed into dynamic SBF flowing at normal physiological speed of body fluid of skeletal muscle. The changes were characterized using SEM, XPS, IR and XRD. Changes can be observed after the sandblasted surface of dense calcium phosphate ceramics had been immersed in SBF for 14 days. XPS analysis results showed that the flake-like structure was composed of Ca, P, C, O; IR analysis result of surface structure of samples showed that there were specific peaks for CO3^2-; XRD results indicated the decrease in crystallinity and the increase in amorphous structure. The rough surface was advantageous for the formation of bone-like apatite. Increasing the Ca^2+, HPO4^2- concentration of SBF could also enhance the bonelike apatite formation. All the results demonstrated that local concentration is a key factor affecting nucleation.展开更多
磷酸钙陶瓷植入体内后其表面类骨磷灰石层的形成是诱导成骨的先决条件.本实验在模拟体液(simulated body fluid, SBF)以人体骨骼肌组织内体液的正常生理流率(2mL/100mL.min)和偏离正常生理流率流动的动态条件下,研究在动态SBF中影响致...磷酸钙陶瓷植入体内后其表面类骨磷灰石层的形成是诱导成骨的先决条件.本实验在模拟体液(simulated body fluid, SBF)以人体骨骼肌组织内体液的正常生理流率(2mL/100mL.min)和偏离正常生理流率流动的动态条件下,研究在动态SBF中影响致密磷酸钙陶瓷表面类骨磷灰石层形成的因素.结果表明:在生理流率条件下,材料的粗糙表面有利于类骨磷灰石的形成,加大SBF中Ca2+、HPO2-4离子浓度,类骨磷灰石层的形成速度加快.比起通常使用的静态浸泡试验,SBF以生理流率流动的动态试验能够更好地模拟类骨磷灰石生长的体内环境.动态SBF对了解类骨磷灰石形成,进而了解磷酸钙陶瓷在体内诱导成骨机理是十分有用的.展开更多
When bioactive materials are implanted in vivo, a bone-like apatite layer can be found on their surfaces, which is critical to the establishment of bone-bonding between materials and living tissues. In this study, bon...When bioactive materials are implanted in vivo, a bone-like apatite layer can be found on their surfaces, which is critical to the establishment of bone-bonding between materials and living tissues. In this study, bone-like apatite formation in vitro and in vivo on surface of nano apatite/polyamide (n-HA/PA66) composite was investigated, and the interface between the implanted composite and surrounding bone tissue of rabbit were also examined. The results revealed that in both simulated body fluids (SBF) and dorsal muscles of rabbit, bone-like apatite could form on the biocomposite surface. When the samples were implanted in cortical bone, they combined directly with the natural bone without fibrous tissue in-between. The results showed that the n-HA/PA66 biocomposite had excellent bioactivity, which might be a good candidate for bone defect replacement.展开更多
A novel biodegradable bone repair biomaterial of bone-like carbonated apatite with porous structurewas prepared by using self-hardening calcium phosphate cement. Cell culture, degradation in simulated body liq-uid (SB...A novel biodegradable bone repair biomaterial of bone-like carbonated apatite with porous structurewas prepared by using self-hardening calcium phosphate cement. Cell culture, degradation in simulated body liq-uid (SBF) and as a carrier for bone morphogenic protein (BMP) controllable releasing experiments were performedto evaluate the biocompatibility, degradation and BMP carrier properties of the porous scaffold. The results revealthat the degradation property of the carbonated apatite is better than hydroxyapatite, the more the content of CO32-in apatite, the faster the degradation of the materials, the cell could attach, proliferate and differentiate on theporous scaffold, indicating that the bone like apatites not only have excellent biocompatibility but are alsobiodegradable and can be used as carriers for BMP controlling release.展开更多
为改善纳米SiO2粒子在聚L-乳酸基体中的分散性,将乳酸齐聚物接枝到纳米SiO2粒子表面,通过IR,29Si MAS NMR和TGA对改性SiO2进行表征.以聚L-乳酸(PLLA)为基体,加入乳酸齐聚物接枝改性的二氧化硅(g-SiO2)粒子,采用溶液浇铸法制备PLLA/g-SiO...为改善纳米SiO2粒子在聚L-乳酸基体中的分散性,将乳酸齐聚物接枝到纳米SiO2粒子表面,通过IR,29Si MAS NMR和TGA对改性SiO2进行表征.以聚L-乳酸(PLLA)为基体,加入乳酸齐聚物接枝改性的二氧化硅(g-SiO2)粒子,采用溶液浇铸法制备PLLA/g-SiO2纳米复合材料,测试其在模拟体液(SBF)中的生物活性.通过XRD,IR,SEM和EDS表征手段,考察材料表面类骨磷灰石形成能力.结果表明,乳酸齐聚物成功地接枝到SiO2表面,当反应36 h时,g-SiO2接枝率最大(9.22%).随着g-SiO2含量增加和浸泡时间的延长,材料表面最初形成的无定形沉积物矿化成碳酸羟基磷灰石(Carbonated hydroxyapatite,CHA),钙磷比为1.72,类似于人骨无机质,表明g-SiO2的引入能明显加速复合材料表面CHA沉积,该复合材料有望成为骨修复填充材料和组织工程支架材料.展开更多
基金supported by research grants to E.Jabbari from the National Science Foundation under Award Numbers CBET1403545 and IIP150024 and the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number AR063745.
文摘The objective of this work was to fabricate a rigid,resorbable and osteoconductive scaffold by mimicking the hierarchical structure of the cortical bone.Aligned peptide-functionalize nanofiber microsheets were generated with calcium phosphate(CaP)content similar to that of the natural cortical bone.Next,the CaP-rich fibrous microsheets were wrapped around a microneedle to form a laminated microtube mimicking the structure of an osteon.Then,a set of the osteon-mimetic microtubes were assembled around a solid rod and the assembly was annealed to fuse the microtubes and form a shell.Next,an array of circular microholes were drilled on the outer surface of the shell to generate a cortical bone-like scaffold with an interconnected network of Haversian-and Volkmann-like microcanals.The CaP content,porosity and density of the bone-mimetic microsheets were 240 wt%,8%and 1.9 g/ml,respectively,which were close to that of natural cortical bone.The interconnected network of microcanals in the fused microtubes increased permeability of a model protein in the scaffold.The cortical scaffold induced osteogenesis and vasculogenesis in the absence of bone morphogenetic proteins upon seeding with human mesenchymal stem cells and endothelial colony-forming cells.The localized and timed-release of morphogenetic factors significantly increased the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells in the cortical scaffold.The cortical bonemimetic nature of the cellular construct provided balanced rigidity,resorption rate,osteoconductivity and nutrient diffusivity to support vascularization and osteogenesis.
基金This study was supported by a grant from the National Natural Science Foundation of China
文摘Background: Recently, local sustained-release antibiotics systems have been developed because they can increase local loci of concentrated antibiotics without increasing the plasma concentration, and thereby effectively decrease any systemic toxicity and side effects. A vancomycin-loaded bone-like hydroxyapatite/poly-amino acid (V-BHA/PAA) bony scaffold was successfully fabricated with vancomycin-loaded poly lactic-co-glycolic acid microspheres and BHA/PAA, which was demonstrated to exhibit both porosity and perfect biodegradability. The aim of this study was to systematically evaluate the biosafety of this novel scaffold by conducting toxicity tests in vitro and in vivo. Methods: According to the ISO rules for medical implant biosafety, for in vitro tests, the scaffold was incubated with L929 fibroblasts or rabbit noncoagulant blood, with simultaneous creation of positive control and negative control groups. The growth condition ofL929 cells and hemolytic ratio were respectively evaluated after various incubation periods. For in vivo tests, a chronic osteomyelitis model involving the right proximal tibia of New Zealand white rabbits was established. After bacterial identification, the drug-loaded scaffold, drug-unloaded BHA/PAA, and poly (methyl methacrylate) were implanted, and a blank control group was also set up. Subsequently, the in vivo blood drug concentrations were measured, and the kidney and liver functions were evaluated. Results: In the in vitro tests, the cytotoxicity grades of V-BHA/PAA and BHA/PAA-based on the relative growth rate were all below 1. The hemolysis ratios of V-BHA/PAA and BHA/PAA were 2.27% and 1.42%, respectively, both below 5%. In the in vivo tests, the blood concentration of vancomycin after implantation of V-BHA/PAA was measured at far below its toxic concentration (60 mg/L), and the function and histomorphology of the liver and kidney were all normal. Conclusion: According to ISO standards, the V-BHA/PAA scaffold is considered to have sufficient safety for cl
文摘The effect of iron substitution on the bioactivity of hydroxyapatite (HAp) under the physiological conditions was investigated. Five samples of iron doped hydroxyapatite (FeHAp) with different iron concentrations (0, 0.05, 0.1, 0.2, and 0.3 mol%) were synthesized by wet chemical method. The formation of bone-like apatite layer on the surface of the samples was detected using X-ray diffraction (XRD), Fourier transforms infrared (FTIR) and scanning electron microscope techniques. The changes of the pH of SBF medium were measured at pre-determined time intervals using a pH meter. The dissolution of calcium, phosphorus and iron ions in SBF medium was determined by single beam scanning spectrophotometer. XRD and FTIR results exhibit the formation of carbonate apatite layer on the surface of the immersed samples, which increase with the increase of iron content. SEM results showed agglomeration of small crystals on the surface of the immersed samples. The solubility and dissolution tests revealed that iron doped HAp samples had a higher solubility and dissolution rate than pure sample, which indicated that iron increased the bioactivity of HAp in vitro.
文摘Bone-like hydroxyapatite ( HAp ) powders were synthesized using a reverse microemulsion method without further calcine processing. Synthesis conditions had significant effects on the formation of HAp. According to the results of XRD patterns and FFIR spectra, the obtained needle shape HAp powder with poorly crystallized and carbonate substitution was chemically and structurally similar to the human bone powders. The alkaline of emulsion was responsible for the obtained HAp without calcine route, and carbonate came from CO2 in air during preparation. By ultrasonic treatment, the morphology of HAp particles changed from spherical to needle shape for the reverse micelles broke up due to the high energy of ultrasonic.
基金supported by the 90th Anniversary of Chulalongkorn University,Rachadapisek Sompote FundFaculty of Dentistry(DFR62003),Chulalongkorn University+3 种基金Chulalongkorn Academic Advancement Into Its 2nd Century ProjectNewton FundThailand Research Fund(RSA6280001,DPG6180001)supported by Ratchadapisek Somphot Fund for Postdoctoral Fellowship,Chulalongkorn University,Thailand。
文摘Osteogenesis imperfecta(OI)is mainly characterized by bone fragility and Ehlers-Danlos syndrome(EDS)by connective tissue defects.Mutations in COL1A1 or COL1A2 can lead to both syndromes.OI/EDS overlap syndrome is mostly caused by helical mutations near the amino-proteinase cleavage site of type Ⅰ procollagen.In this study,we identified a Thai patient having OI type Ⅲ,EDS,brachydactyly,and dentinogenesis imperfecta.His dentition showed delayed eruption,early exfoliation,and severe malocclusion.For the first time,ultrastructural analysis of the tooth affected with OI/EDS showed that the tooth had enamel inversion,bonelike dentin,loss of dentinal tubules,and reduction in hardness and elasticity,suggesting severe developmental disturbance.These severe dental defects have never been reported in OI or EDS.Exome sequencing identified a novel de novo heterozygous glycine substitution,c.3296G>A,p.Gly1099Glu,in exon 49 of COL1A2.Three patients with mutations in the exon 49 of COL1A2 were previously reported to have OI with brachydactyly and intracranial hemorrhage.Notably,two of these three patients did not show hyperextensible joints and hypermobile skin,while our patient at the age of 5 years had not developed intracranial hemorrhage.Here,we demonstrate that the novel glycine substitution in the carboxyl region of alpha2(Ⅰ)collagen triple helix leads to OI/EDS with brachydactyly and severe tooth defects,expanding the genotypic and phenotypic spectra of OI/EDS overlap syndrome.
基金Project(51274247)supported by the National Natural Science Foundation of ChinaProject(2012BAE06B00)supported by the National High Technology Research and Development Program to China+1 种基金Project(2011QNZT046)supported by the Fundamental Research Funds of Central South Universities of ChinaProject supported by Hunan Postdoctoral Scientific Program,China
文摘FeCrAl(f)/HA biological functionally gradient materials(FGMs) were successfully fabricated by the hot pressing technique.Scanning electron microscope(SEM),energy dispersive spectrometer(EDS) and bending strength test machine were utilized to characterize the microstructure,component,mechanical properties and the formation of the Ca-deficient apatite on the surface of these materials.The results indicate that an asymmetrical FeCrAl(f)/HA FGM,consolidating powders prepared by mixing HA with 3%–15%(volume fraction) is successfully prepared.Both of the matrix and FeCrAl fiber are integrated very tightly and bite into each other very deeply.And counter diffusion takes place to some extent in two phase interfaces.The elemental compositions of the FeCrAl(f)/HA FGM change progressively.Ca and P contents increase gradually with immersion time increasing,and thereafter approach equilibrium.The bone-like apatite layer forms on the materials surface,which possesses benign bioactivity,and the favorable biocompatibility can provide potential firm fixation between FeCrAl(f)/HA asymmetrical FGM implants and human bone.
文摘This study aimed at exploring the effect of surface morphology of dense phosphate calcimn (Ca-P) ceramics upon the formation of bone-like apatite in static or dynamic simulated body fluid (SBF). Dense and sandblasted calcium phosphate ceramics were immersed into dynamic SBF flowing at normal physiological speed of body fluid of skeletal muscle. The changes were characterized using SEM, XPS, IR and XRD. Changes can be observed after the sandblasted surface of dense calcium phosphate ceramics had been immersed in SBF for 14 days. XPS analysis results showed that the flake-like structure was composed of Ca, P, C, O; IR analysis result of surface structure of samples showed that there were specific peaks for CO3^2-; XRD results indicated the decrease in crystallinity and the increase in amorphous structure. The rough surface was advantageous for the formation of bone-like apatite. Increasing the Ca^2+, HPO4^2- concentration of SBF could also enhance the bonelike apatite formation. All the results demonstrated that local concentration is a key factor affecting nucleation.
文摘磷酸钙陶瓷植入体内后其表面类骨磷灰石层的形成是诱导成骨的先决条件.本实验在模拟体液(simulated body fluid, SBF)以人体骨骼肌组织内体液的正常生理流率(2mL/100mL.min)和偏离正常生理流率流动的动态条件下,研究在动态SBF中影响致密磷酸钙陶瓷表面类骨磷灰石层形成的因素.结果表明:在生理流率条件下,材料的粗糙表面有利于类骨磷灰石的形成,加大SBF中Ca2+、HPO2-4离子浓度,类骨磷灰石层的形成速度加快.比起通常使用的静态浸泡试验,SBF以生理流率流动的动态试验能够更好地模拟类骨磷灰石生长的体内环境.动态SBF对了解类骨磷灰石形成,进而了解磷酸钙陶瓷在体内诱导成骨机理是十分有用的.
基金the Ministry of Science and Technology of China and the Ministry of Education of China
文摘When bioactive materials are implanted in vivo, a bone-like apatite layer can be found on their surfaces, which is critical to the establishment of bone-bonding between materials and living tissues. In this study, bone-like apatite formation in vitro and in vivo on surface of nano apatite/polyamide (n-HA/PA66) composite was investigated, and the interface between the implanted composite and surrounding bone tissue of rabbit were also examined. The results revealed that in both simulated body fluids (SBF) and dorsal muscles of rabbit, bone-like apatite could form on the biocomposite surface. When the samples were implanted in cortical bone, they combined directly with the natural bone without fibrous tissue in-between. The results showed that the n-HA/PA66 biocomposite had excellent bioactivity, which might be a good candidate for bone defect replacement.
文摘A novel biodegradable bone repair biomaterial of bone-like carbonated apatite with porous structurewas prepared by using self-hardening calcium phosphate cement. Cell culture, degradation in simulated body liq-uid (SBF) and as a carrier for bone morphogenic protein (BMP) controllable releasing experiments were performedto evaluate the biocompatibility, degradation and BMP carrier properties of the porous scaffold. The results revealthat the degradation property of the carbonated apatite is better than hydroxyapatite, the more the content of CO32-in apatite, the faster the degradation of the materials, the cell could attach, proliferate and differentiate on theporous scaffold, indicating that the bone like apatites not only have excellent biocompatibility but are alsobiodegradable and can be used as carriers for BMP controlling release.
文摘为改善纳米SiO2粒子在聚L-乳酸基体中的分散性,将乳酸齐聚物接枝到纳米SiO2粒子表面,通过IR,29Si MAS NMR和TGA对改性SiO2进行表征.以聚L-乳酸(PLLA)为基体,加入乳酸齐聚物接枝改性的二氧化硅(g-SiO2)粒子,采用溶液浇铸法制备PLLA/g-SiO2纳米复合材料,测试其在模拟体液(SBF)中的生物活性.通过XRD,IR,SEM和EDS表征手段,考察材料表面类骨磷灰石形成能力.结果表明,乳酸齐聚物成功地接枝到SiO2表面,当反应36 h时,g-SiO2接枝率最大(9.22%).随着g-SiO2含量增加和浸泡时间的延长,材料表面最初形成的无定形沉积物矿化成碳酸羟基磷灰石(Carbonated hydroxyapatite,CHA),钙磷比为1.72,类似于人骨无机质,表明g-SiO2的引入能明显加速复合材料表面CHA沉积,该复合材料有望成为骨修复填充材料和组织工程支架材料.