In this review paper,the challenges and some recent developments of adhesive bonding technology in composite aircraft structures are discussed.The durability of bonded joints is defined and presented for parameters th...In this review paper,the challenges and some recent developments of adhesive bonding technology in composite aircraft structures are discussed.The durability of bonded joints is defined and presented for parameters that may influence bonding quality.Presented is also,a numerical design approach for composite joining profiles used to realize adhesive bonding.It is shown that environmental ageing and pre-bond contamination of bonding surfaces may degrade significantly fracture toughness of bonded joints.Moreover,it is obvious that additional research is needed in order to design joining profiles that will enable load transfer through shearing of the bondline.These findings,together with the limited capabilities of existing non-destructive testing techniques,can partially explain the confined use of adhesive bonding in primary composite aircraft structural parts.展开更多
Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this stud...Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this study,a SS→W→SS sandwich structure is fabricated via a special laser powder bed fusion(LPBF)method based on an ultrasonic-assisted powder deposition mechanism.Material characterization of the SS→W interface and W→SS interface was conducted,including microstructure,element distribution,phase distribution,and nano-hardness.A coupled modelling method,combining computational fluid dynamics modelling with discrete element method,simulated the melt pool dynamics and solidification at the material interfaces.The study shows that the interface bonding of SS→W(SS printed on W)is the combined effect of solid-state diffusion with different elemental diffusion rates and grain boundary diffusion.The keyhole mode of the melt pool at the W→SS(W printed on SS)interface makes the pre-printed SS layers repeatedly remelted,causing the liquid W to flow into the sub-surface of the pre-printed SS through the keyhole cavities realizing the bonding of the W→SS interface.The above interfacial bonding behaviours are significantly different from the previously reported bonding mechanism based on the melt pool convection during multiple material LPBF.The abnormal material interfacial bonding behaviours are reported for the first time.展开更多
Both single-face vacuum bag curing(SVC) and double-face vacuum bag curing(DVC)can be used in scarf repair of composite structures. But different curing conditions caused by the sealing state may affect the bonding qua...Both single-face vacuum bag curing(SVC) and double-face vacuum bag curing(DVC)can be used in scarf repair of composite structures. But different curing conditions caused by the sealing state may affect the bonding quality of scarf-repaired structures. In this paper, the effect of curing condition on bonding quality of scarf-repaired laminates was experimentally investigated in terms of surface profiles, moisture absorption curves and section profiles. In order to further explore the moisture absorption mechanism, finite element model of the repaired laminates using DVC was established with moisture diffusion of both the adhesive and composite laminates considered. This model was verified by experimental results. Based on the model of DVC case, the model of SVC case was built by changing moisture absorption parameters of the adhesive. Results show that SVC reduces the bonding quality, mainly reflecting in more adhesive inner voids and patch-toparent dislocation. And SVC increases moisture absorption rate and moisture equilibrium content of the adhesive, and its effect on the former is far greater than that on the latter.展开更多
In this study,macro-and meso-mechanical properties of frozen sand molds were discussed based on the Hertz-Mindlin with Bonding(HMB)model.Plackett-Burman,steepest ascent,and central composite designs were utilized to p...In this study,macro-and meso-mechanical properties of frozen sand molds were discussed based on the Hertz-Mindlin with Bonding(HMB)model.Plackett-Burman,steepest ascent,and central composite designs were utilized to propose a parameter calibration methodology.The effects of mesoscopic parameter variations on the compressive strength and average gradient of stress-strain were investigated through response surface method analysis.Results showed that the relative error between the simulated and measured repose angle is 3.1%under calibrated intrinsic contact parameters.The compressive strength and average stress-strain gradient primarily depend on the normal and shear stiffness per unit area,as well as the particle size and porosity of the silica sand.Furthermore,taking load-displacement curves of three frozen sand molds with different geometric characteristics as the target value,the reliability and effectiveness of the frozen sand mold HMB model were verified through uniaxial compression tests and discrete element simulations.展开更多
This work has successfully proposed a solution to produce robust Nb-interlayer-inserted Ti-6Al-4V/Si_(3)N_(4)joints optimized for a maximum operating temperature of 873 K;transient liquid phase bonding(TLPB)of Ti-6Al-...This work has successfully proposed a solution to produce robust Nb-interlayer-inserted Ti-6Al-4V/Si_(3)N_(4)joints optimized for a maximum operating temperature of 873 K;transient liquid phase bonding(TLPB)of Ti-6Al-4V/Nb side was carried out with Cu and Ni fillers to suppress brittle intermetallic compounds(IMCs),whereas brazing of Nb/Si_(3)N_(4)side was performed using a highly ductile Ti-added Ag-rich filler for effective residual-stress relaxation.A sound yet simple one-step bonding process incorporating simul-taneous TLPB and brazing was achieved with a relatively short holding time of 10 min at 1213 K.TLPB of Ti-6Al-4V/Nb side with Cu and Ni foils of 2-μm-thick each as a laminated filler suppressed brittle Ti-based IMCs and developed a homogenized microstructure consisting mainly of(α+β)-Ti via isothermal solidification.Meanwhile,brazing of Nb/Si_(3)N_(4)side with 100-μm-thick SILVER-ABA filler(92.75Ag-5Cu-1Al-1.25Ti mass%)foil enhanced interfacial bonding with sufficient total Ti content and accommodated residual stress better than conventional eutectic Ag-Cu-based fillers,and it was verified by finite element analysis with consideration of materials’temperature-dependent elasto-plastic properties.All joints with a bonding area of 10 mm×10 mm were tested via symmetrical four-point bending from room temper-ature(RT)to 873 K fractured from Nb/Si_(3)N_(4)side.When re-heating the joints from RT to 673 K,frac-ture initiation gradually shifted from Si_(3)N_(4)towards interfacial-compounds/Si_(3)N_(4)interface and bending strengths maintained∼220 MPa as weakening of SILVER-ABA filler was compensated by residual-stress relaxation in Si_(3)N_(4).When tested at 873 K,joints fractured mainly across the Ag-rich solid solution in a ductile manner and bending strength degraded by∼20%to 171 MPa as weakening of SILVER-ABA filler dominated.展开更多
文摘In this review paper,the challenges and some recent developments of adhesive bonding technology in composite aircraft structures are discussed.The durability of bonded joints is defined and presented for parameters that may influence bonding quality.Presented is also,a numerical design approach for composite joining profiles used to realize adhesive bonding.It is shown that environmental ageing and pre-bond contamination of bonding surfaces may degrade significantly fracture toughness of bonded joints.Moreover,it is obvious that additional research is needed in order to design joining profiles that will enable load transfer through shearing of the bondline.These findings,together with the limited capabilities of existing non-destructive testing techniques,can partially explain the confined use of adhesive bonding in primary composite aircraft structural parts.
基金funded by the Engineering and Physical Science Research Council(EPSRC),UK(Grant Nos.EP/P027563/1 and EP/M028267/1)the Science and Technology Facilities Council(STFC)(Grant No.ST/R006105/1)the Bridging for Innovators Programme of Department for Business,Energy and Industrial Strategy(BEIS),UK.
文摘Tungsten(W)and stainless steel(SS)are well known for the high melting point and good corrosion resistance respectively.Bimetallic W-SS structures would offer potential applications in extreme environments.In this study,a SS→W→SS sandwich structure is fabricated via a special laser powder bed fusion(LPBF)method based on an ultrasonic-assisted powder deposition mechanism.Material characterization of the SS→W interface and W→SS interface was conducted,including microstructure,element distribution,phase distribution,and nano-hardness.A coupled modelling method,combining computational fluid dynamics modelling with discrete element method,simulated the melt pool dynamics and solidification at the material interfaces.The study shows that the interface bonding of SS→W(SS printed on W)is the combined effect of solid-state diffusion with different elemental diffusion rates and grain boundary diffusion.The keyhole mode of the melt pool at the W→SS(W printed on SS)interface makes the pre-printed SS layers repeatedly remelted,causing the liquid W to flow into the sub-surface of the pre-printed SS through the keyhole cavities realizing the bonding of the W→SS interface.The above interfacial bonding behaviours are significantly different from the previously reported bonding mechanism based on the melt pool convection during multiple material LPBF.The abnormal material interfacial bonding behaviours are reported for the first time.
基金National Natural Science Foundation of China (No. 11472024) for financial support。
文摘Both single-face vacuum bag curing(SVC) and double-face vacuum bag curing(DVC)can be used in scarf repair of composite structures. But different curing conditions caused by the sealing state may affect the bonding quality of scarf-repaired structures. In this paper, the effect of curing condition on bonding quality of scarf-repaired laminates was experimentally investigated in terms of surface profiles, moisture absorption curves and section profiles. In order to further explore the moisture absorption mechanism, finite element model of the repaired laminates using DVC was established with moisture diffusion of both the adhesive and composite laminates considered. This model was verified by experimental results. Based on the model of DVC case, the model of SVC case was built by changing moisture absorption parameters of the adhesive. Results show that SVC reduces the bonding quality, mainly reflecting in more adhesive inner voids and patch-toparent dislocation. And SVC increases moisture absorption rate and moisture equilibrium content of the adhesive, and its effect on the former is far greater than that on the latter.
基金supported by the National Key R&D Program of China(grant No.2021YFB3401200)the 2021 Industrial Technology Basic Public Service Platform Project of Ministry of Industry and Information Technology(grant No.2021-0163-1-2).
文摘In this study,macro-and meso-mechanical properties of frozen sand molds were discussed based on the Hertz-Mindlin with Bonding(HMB)model.Plackett-Burman,steepest ascent,and central composite designs were utilized to propose a parameter calibration methodology.The effects of mesoscopic parameter variations on the compressive strength and average gradient of stress-strain were investigated through response surface method analysis.Results showed that the relative error between the simulated and measured repose angle is 3.1%under calibrated intrinsic contact parameters.The compressive strength and average stress-strain gradient primarily depend on the normal and shear stiffness per unit area,as well as the particle size and porosity of the silica sand.Furthermore,taking load-displacement curves of three frozen sand molds with different geometric characteristics as the target value,the reliability and effectiveness of the frozen sand mold HMB model were verified through uniaxial compression tests and discrete element simulations.
基金This work was financially supported by the Light Metal Educa-tional Foundation,Inc.of Japan.
文摘This work has successfully proposed a solution to produce robust Nb-interlayer-inserted Ti-6Al-4V/Si_(3)N_(4)joints optimized for a maximum operating temperature of 873 K;transient liquid phase bonding(TLPB)of Ti-6Al-4V/Nb side was carried out with Cu and Ni fillers to suppress brittle intermetallic compounds(IMCs),whereas brazing of Nb/Si_(3)N_(4)side was performed using a highly ductile Ti-added Ag-rich filler for effective residual-stress relaxation.A sound yet simple one-step bonding process incorporating simul-taneous TLPB and brazing was achieved with a relatively short holding time of 10 min at 1213 K.TLPB of Ti-6Al-4V/Nb side with Cu and Ni foils of 2-μm-thick each as a laminated filler suppressed brittle Ti-based IMCs and developed a homogenized microstructure consisting mainly of(α+β)-Ti via isothermal solidification.Meanwhile,brazing of Nb/Si_(3)N_(4)side with 100-μm-thick SILVER-ABA filler(92.75Ag-5Cu-1Al-1.25Ti mass%)foil enhanced interfacial bonding with sufficient total Ti content and accommodated residual stress better than conventional eutectic Ag-Cu-based fillers,and it was verified by finite element analysis with consideration of materials’temperature-dependent elasto-plastic properties.All joints with a bonding area of 10 mm×10 mm were tested via symmetrical four-point bending from room temper-ature(RT)to 873 K fractured from Nb/Si_(3)N_(4)side.When re-heating the joints from RT to 673 K,frac-ture initiation gradually shifted from Si_(3)N_(4)towards interfacial-compounds/Si_(3)N_(4)interface and bending strengths maintained∼220 MPa as weakening of SILVER-ABA filler was compensated by residual-stress relaxation in Si_(3)N_(4).When tested at 873 K,joints fractured mainly across the Ag-rich solid solution in a ductile manner and bending strength degraded by∼20%to 171 MPa as weakening of SILVER-ABA filler dominated.