Superhydrophobic coatings have been considerably used in corrosion and its protection of metallic Mg.And the comprehensive performance(hydrophobicity,bonding strength,and corrosion resistance,etc.)of the top coating m...Superhydrophobic coatings have been considerably used in corrosion and its protection of metallic Mg.And the comprehensive performance(hydrophobicity,bonding strength,and corrosion resistance,etc.)of the top coating may be highly dependent on the physical and chemical properties of the primer or under coat.Herein,an integrated superhydrophobic polypropylene(PP)coating was fabricated on the micro-arc oxidized Mg substrate via one-step dipping.Surface morphologies and chemical compositions of the composite coating were examined through Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD),and field-emission scanning electron microscopy(FESEM)together with X-ray photoelectron spectroscopy(XPS).The surface wettability of the coating was determined by contact angle and sliding angle.The corrosion-resistant performance was evaluated via electrochemical and immersion measurements.The results showed that the hybrid coating possessed micron-scaled granular structure on the surface with a high water contact angle of 167.2±0.8°and a low water sliding angle of 2.7±0.5°.The corrosion resistance of superhydrophobic coating was obviously enhanced with a low corrosion current density of 8.76×10^(−9)A/cm^(2),and the coating still maintained integrity after 248 h of immersion in 3.5wt%NaCl aqueous solution.The MAO coating provides better adhesion of PP to the surface.Hence,the superhydrophobic coating exhibited superior bonding strength,corrosion resistance and durability.展开更多
A simulation study was carried out by using dissipative particle dynamics(DPD) method to explore the effects of properties of coating chains, such as length, density, rigidity of polymer chains, as well as the distanc...A simulation study was carried out by using dissipative particle dynamics(DPD) method to explore the effects of properties of coating chains, such as length, density, rigidity of polymer chains, as well as the distance between nanoparticles on bonding reaction of coating chains grafted onto nanoparticles. The results show that bonding ratios of coated chains strongly depend on the length and density of coating chains. For nanoparticles with different coating densities, the optimum chain length for bonding reaction are varied. The rigidity of coating chains exhibits vigorous effects on bonding reaction that highly depends on chain lengths. DPD simulation can be used to study the bonding reaction between coated nanoparticles, which may help experimental synthesis of nanocomposites with excellent properties.展开更多
基金This work was supported by the National Natural Science Foundation of China(51571134)the SDUST Research Fund(2014TDJH104).
文摘Superhydrophobic coatings have been considerably used in corrosion and its protection of metallic Mg.And the comprehensive performance(hydrophobicity,bonding strength,and corrosion resistance,etc.)of the top coating may be highly dependent on the physical and chemical properties of the primer or under coat.Herein,an integrated superhydrophobic polypropylene(PP)coating was fabricated on the micro-arc oxidized Mg substrate via one-step dipping.Surface morphologies and chemical compositions of the composite coating were examined through Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD),and field-emission scanning electron microscopy(FESEM)together with X-ray photoelectron spectroscopy(XPS).The surface wettability of the coating was determined by contact angle and sliding angle.The corrosion-resistant performance was evaluated via electrochemical and immersion measurements.The results showed that the hybrid coating possessed micron-scaled granular structure on the surface with a high water contact angle of 167.2±0.8°and a low water sliding angle of 2.7±0.5°.The corrosion resistance of superhydrophobic coating was obviously enhanced with a low corrosion current density of 8.76×10^(−9)A/cm^(2),and the coating still maintained integrity after 248 h of immersion in 3.5wt%NaCl aqueous solution.The MAO coating provides better adhesion of PP to the surface.Hence,the superhydrophobic coating exhibited superior bonding strength,corrosion resistance and durability.
基金Funded by the National Natural Science Foundation of China(Nos.20974001,21174001,51273001,and 51403001)
文摘A simulation study was carried out by using dissipative particle dynamics(DPD) method to explore the effects of properties of coating chains, such as length, density, rigidity of polymer chains, as well as the distance between nanoparticles on bonding reaction of coating chains grafted onto nanoparticles. The results show that bonding ratios of coated chains strongly depend on the length and density of coating chains. For nanoparticles with different coating densities, the optimum chain length for bonding reaction are varied. The rigidity of coating chains exhibits vigorous effects on bonding reaction that highly depends on chain lengths. DPD simulation can be used to study the bonding reaction between coated nanoparticles, which may help experimental synthesis of nanocomposites with excellent properties.