通过试验的方法对影响安装边螺栓连接结构密封特性的因素进行了系统分析与研究,设计和搭建了安装边螺栓连接密封特性试验系统,研究了螺栓加载方案、预紧力和螺栓数量对安装边密封特性的影响规律。研究表明:JIS B 2251加载方案可以获得...通过试验的方法对影响安装边螺栓连接结构密封特性的因素进行了系统分析与研究,设计和搭建了安装边螺栓连接密封特性试验系统,研究了螺栓加载方案、预紧力和螺栓数量对安装边密封特性的影响规律。研究表明:JIS B 2251加载方案可以获得更均匀的预紧力,与其他方案相比,气体泄漏持续的时间长,达到600s,且加载工作量小;增大预紧力可使压力下降的持续时间增加,从6.0kN的400s至7.5kN的540s和9.0kN的650s;螺栓数量的增加使得t=0时刻的泄漏率从2.6cm3/s降到1.7cm3/s,从而提升试验件的密封性能。该研究可为安装边密封特性分析与结构设计提供参考。展开更多
In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on thi...In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on this kind of high energy-absorbing steel for rock bolt remain immature.In this study,taking Muzhailing highway tunnel as the background,physically based crystal plasticity simulations were performed to understand the effect of rock loading rate and pretension on the deformation behaviors of twinning induced plasticity(TWIP)steel used for rock bolt.The material physical connecting to the underlying microscopic mechanisms of dislocation glide and deformation twinning were incorporated in numerical modeling.The rock loading conditions were mimicked by the real-time field monitoring data of the NPR bolt/cable equipment installed on the tunnel surrounding rock surface.The results indicate that the bolt rod exhibits pronounced deformation-softening behavior with decrease of the loading rate.There is also a sound deformation-relaxation phenomenon induced by the dramatic decrease of loading rate after pre-tensioning.The high pretension(>600 MPa or 224 k N)can help bolt rod steel resist deformation-softening behavior,especially at low loading rate(<10~(-1)MPa/s or 10~(-2)kN/s).The loading rate was found to be a significant factor affecting deformation-softening behavior while the pretension was found to be the major parameter accounting for the deformation-relaxation scenario.The results provide the theoretical basis and technical support for practical applications.展开更多
The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths a...The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.展开更多
文摘通过试验的方法对影响安装边螺栓连接结构密封特性的因素进行了系统分析与研究,设计和搭建了安装边螺栓连接密封特性试验系统,研究了螺栓加载方案、预紧力和螺栓数量对安装边密封特性的影响规律。研究表明:JIS B 2251加载方案可以获得更均匀的预紧力,与其他方案相比,气体泄漏持续的时间长,达到600s,且加载工作量小;增大预紧力可使压力下降的持续时间增加,从6.0kN的400s至7.5kN的540s和9.0kN的650s;螺栓数量的增加使得t=0时刻的泄漏率从2.6cm3/s降到1.7cm3/s,从而提升试验件的密封性能。该研究可为安装边密封特性分析与结构设计提供参考。
基金the National Natural Science Foundation of China(Grant No.41941018)the Science and Technology Major Project of Gansu Province(Grant No.19ZD2GA005)the Research Institute for Deep Underground Science and Engineering Foundation(Grant No.XD2021023)。
文摘In deep ground engineering,the use of high-strength and high-toughness steels for rock bolt can significantly improve its energy absorption capacity.However,the mechanisms and effects of rock loading conditions on this kind of high energy-absorbing steel for rock bolt remain immature.In this study,taking Muzhailing highway tunnel as the background,physically based crystal plasticity simulations were performed to understand the effect of rock loading rate and pretension on the deformation behaviors of twinning induced plasticity(TWIP)steel used for rock bolt.The material physical connecting to the underlying microscopic mechanisms of dislocation glide and deformation twinning were incorporated in numerical modeling.The rock loading conditions were mimicked by the real-time field monitoring data of the NPR bolt/cable equipment installed on the tunnel surrounding rock surface.The results indicate that the bolt rod exhibits pronounced deformation-softening behavior with decrease of the loading rate.There is also a sound deformation-relaxation phenomenon induced by the dramatic decrease of loading rate after pre-tensioning.The high pretension(>600 MPa or 224 k N)can help bolt rod steel resist deformation-softening behavior,especially at low loading rate(<10~(-1)MPa/s or 10~(-2)kN/s).The loading rate was found to be a significant factor affecting deformation-softening behavior while the pretension was found to be the major parameter accounting for the deformation-relaxation scenario.The results provide the theoretical basis and technical support for practical applications.
基金sponsored by the Norwegian Public Roads Administration(NPRA)
文摘The Norwegian Public Roads Administration(NPRA) is planning for an upgrade of the E39 highway route at the westcoast of Norway. Fixed links shall replace ferries at seven fjord crossings. Wide spans and large depths at the crossings combined with challenging subsea topography and environmental loads call for an extension of existing practice. A variety of bridge concepts are evaluated in the feasibility study. The structures will experience significant loads from deadweight, traffic and environment. Anchoring of these forces is thus one of the challenges met in the project. Large-size subsea rock anchors are considered a viable alternative. These can be used for anchoring of floating structures but also with the purpose of increasing capacity of fixed structures. This paper presents first a thorough study of factors affecting rock anchor bond capacity. Laboratory testing of rock anchors subjected to cyclic loading is thereafter presented. Finally, the paper presents a model predicting the capacity of a rock anchor segment, in terms of a ribbed bar, subjected to a cyclic load history. The research assumes a failure mode occurring in the interface between the rock anchor and the surrounding grout. The constitutive behavior of the bonding interface is investigated for anchors subjected to cyclic one-way tensile loads. The model utilizes the static bond capacity curve as a basis, defining the ultimate bond sbuand the slip s1 at τ. A limited number of input parameters are required to apply the model. The model defines the bond-slip behavior with the belonging rock anchor capacity depending on the cyclic load level(τcy/τ), the cyclic load ratio(R= τcy/τcy), and the number of load cycles(N). The constitutive model is intended to model short anchor lengths representing an incremental length of a complete rock anchor.