期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
嵌入双注意力机制的Faster R-CNN航拍输电线路螺栓缺陷检测 被引量:28
1
作者 戚银城 武学良 +2 位作者 赵振兵 史博强 聂礼强 《中国图象图形学报》 CSCD 北大核心 2021年第11期2594-2604,共11页
目的螺栓是输电线路上最普遍、数量最多的部件,螺栓缺陷检测是输电线路视觉检测任务的一大难点。针对螺栓目标存在背景复杂、目标过小、不同类别之间差异小以及精细特征难以提取的问题,提出一种双注意力机制方法,分别对不同尺度和不同... 目的螺栓是输电线路上最普遍、数量最多的部件,螺栓缺陷检测是输电线路视觉检测任务的一大难点。针对螺栓目标存在背景复杂、目标过小、不同类别之间差异小以及精细特征难以提取的问题,提出一种双注意力机制方法,分别对不同尺度和不同位置的视觉特征进行分析和增强。方法对于不同尺度的特征,网络使用不同尺度的特征图计算出相应的注意力图,然后将相邻层的注意力图差异性作为正则化项加入网络中,从而增强螺栓区域的精细特征。对于不同位置的特征,先使用特征图计算出图像的空间注意力图,注意力图中每个元素表示两个空间位置的相似程度,然后利用注意力图将局部特征与全局特征融合,从而在全局视野上增强相似的区域,达到增大螺栓与背景的特征差异程度,实现提高螺栓区域的预测效果。结果本文在航拍输电线路典型螺栓数据集上进行测试,与基线相比,结合双注意力机制的航拍输电线路螺栓检测方法的平均准确率提高了2.21%,其中正常螺栓类提升了0.29%,缺销螺栓类提升了5.23%,螺母缺失螺栓类提升了1.1%。结论本文提出的基于双注意力机制的航拍输电线路螺栓缺陷检测方法取得了良好的效果,有效避免了螺栓缺陷检测中的误判漏判问题,为进一步对输电线路其他缺陷任务奠定了良好的基础。 展开更多
关键词 双注意力机制 多尺度 空间位置 螺栓缺陷检测 深度学习
原文传递
采用DETR与先验知识融合的输电线路螺栓缺陷检测方法 被引量:3
2
作者 李刚 张运涛 +1 位作者 汪文凯 张东阳 《图学学报》 CSCD 北大核心 2023年第3期438-447,共10页
为了解决深度学习模型无法学习螺栓目标的先验知识、仅通过视觉特征难以快速准确定位其缺陷以及螺栓缺陷样本数量有限、类别不平衡的问题,提出了将深度学习模型与螺栓先验知识相结合的方法。选取端到端目标检测(DETR)为基线模型,设计并... 为了解决深度学习模型无法学习螺栓目标的先验知识、仅通过视觉特征难以快速准确定位其缺陷以及螺栓缺陷样本数量有限、类别不平衡的问题,提出了将深度学习模型与螺栓先验知识相结合的方法。选取端到端目标检测(DETR)为基线模型,设计并实现了一种采用DETR与先验知识融合的改进DETR模型。首先,利用视觉-知识注意力模块将螺栓图像的视觉特征与螺栓先验知识有机融合,获得螺栓对应的增强视觉特征;然后,将增强视觉特征送入基于Transformer编码-解码结构的DETR模型框架中对螺栓目标进行识别与分类;最后,针对螺栓危急缺陷样本少及样本不平衡的问题,引入类增量学习损失函数(CILLF)来增强模型的鉴别能力,缓解螺栓缺陷样本间长尾分布问题。仿真实验结果表明:改进DETR模型在输电线路螺栓缺陷样本上的mAP相较于基线模型DETR提升了2.8个百分点;相较于主流Faster R-CNN,YOLOv5l模型,改进DETR模型在长尾分布下螺栓缺陷样本少的类别图像上的检测效果提升尤为显著。 展开更多
关键词 螺栓缺陷检测 TRANSFORMER DETR 先验知识 增强视觉特征 类增量学习损失函数
下载PDF
基于改进YOLOv8与语义知识融合的金具缺陷检测方法研究
3
作者 李刚 蔡泽浩 +1 位作者 孙华勋 赵振兵 《图学学报》 CSCD 北大核心 2024年第5期979-986,共8页
针对输电线路螺栓金具缺陷检测任务中存在的缺陷样本类间分布不均、缺陷微小特征提取困难等问题,提出基于改进YOLOv8和语义知识融合的输电线路螺栓缺陷检测方法。首先,通过深入分析数据样本中螺栓金具缺陷种类与该螺栓承载金具种类之间... 针对输电线路螺栓金具缺陷检测任务中存在的缺陷样本类间分布不均、缺陷微小特征提取困难等问题,提出基于改进YOLOv8和语义知识融合的输电线路螺栓缺陷检测方法。首先,通过深入分析数据样本中螺栓金具缺陷种类与该螺栓承载金具种类之间的关系,完成语义关联构建工作;之后,在YOLOv8模型Neck部分引入BiFusion和RepBlock模块,增强模型的特征提取能力;其次,使用改进的融合语义知识校正权重的Loss函数,进一步提高训练模型的准确性,减少误检的发生;最后,分别完成基线选取实验、消融实验、超参数调整实验以及对比实验。实验结果表明,相较于Baseline模型,改进YOLOv8方法在平均精确率(mAP)上提升了4.0%,在关键少样本类精确率上提升了24.6%,可有效提高输电线路螺栓金具缺陷检测的效果,该语义关联构建及语义知识融合方法具有一定的泛用性,为输电线路无人机智能巡检领域提供了新的方法支持。 展开更多
关键词 无人机巡检 输电线路金具 螺栓缺陷检测 语义信息融合 YOLOv8
下载PDF
基于深度学习的输电线路螺栓缺陷分类与检测方法 被引量:2
4
作者 武学良 戚银城 《集成电路应用》 2021年第4期64-65,共2页
阐述深度学习的图像处理技术可以快速、准确地检查航拍输电线路螺栓图像的螺栓目标是否存在缺陷,分析多种基于深度学习的螺栓缺陷方法与展望。
关键词 深度学习 输电线路 螺栓缺陷检测
下载PDF
融合先验信息和特征约束的杆塔螺栓缺陷检测
5
作者 阎光伟 周香君 +1 位作者 焦润海 何慧 《中国图象图形学报》 CSCD 北大核心 2023年第11期3497-3508,共12页
目的螺栓是输电线路中数量最多的紧固件,一旦出现缺陷就会影响电力系统的稳定运行。针对螺栓缺陷自动检测中存在的类内多样性和类间相似性挑战,提出了一种融合先验信息和特征约束的Faster R-CNN(faster regions with convolutional neur... 目的螺栓是输电线路中数量最多的紧固件,一旦出现缺陷就会影响电力系统的稳定运行。针对螺栓缺陷自动检测中存在的类内多样性和类间相似性挑战,提出了一种融合先验信息和特征约束的Faster R-CNN(faster regions with convolutional neural network)模型训练方法。方法在航拍巡检图像预处理阶段,设计了基于先验信息的感兴趣区域提取算法,能够提取被识别目标的上下文区域,从而减少模型训练阶段的数据量,帮助模型在训练阶段关注重点区域,提高其特征提取能力。在模型训练阶段,首先通过费舍尔损失约束Faster R-CNN模型的输出特征生成,使样本特征具有较小的类内距离和较大的类间间隔;然后采用K近邻算法处理样本特征得到K近邻概率,将其作为难易样本的指示以引导模型后续更加关注难样本。结果在真实航拍巡检图像构建的螺栓数据集上进行测试,与基线模型相比,本文模型使螺栓识别的平均精度均值(mean average precision,mAP)提高了6.4%,其中正常螺栓识别的平均精度(average precision,AP)提高了0.9%,缺陷螺栓识别的平均精度提高了12%。结论提出的融合先验信息和特征约束的输电杆塔螺栓缺陷检测方法在缺陷螺栓识别上获得了良好的效果,为实现输电线路螺栓缺陷的自动检测奠定了良好的基础。 展开更多
关键词 电力巡检 螺栓缺陷检测 类内多样性 类间相似性 先验信息 特征约束 Faster R-CNN
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部