Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants(including salt marsh,mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plant...Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants(including salt marsh,mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China's commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes,mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching.展开更多
Solar vapor generation(SVC)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main bottleneck problems is that the evaporation efficiency and...Solar vapor generation(SVC)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high-salinity brines.Herein,we demonstrate that the 3D porous melamine-foam(MF)wrapped by a type of self-assembling composite materials based on reduced polyoxometalates(i.e.heteropoly blue,HPB),oleic acid(OA),and polypyrrole(PPy)(labeled with MF@HPB-PPy_(n)-OA)can serve as efficient and stable SVC material at high salinity.Structural characterizations of MF@HPB-PPy_(n)-OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co-exist on the surface of composite materials,optimizing the hydrophilic and hydrophobic interfaces of the SVC materials,and fully exerting its functionality for ultrahigh water-evaporation and anti-salt fouling.The optimal MF@HPB-PPy_(10)-OA operates continuously and stably for over 100 h in 10wt%brine.Furthermore,MF@HPB-PPy_(10)-OA accomplishes complete salt-water separation of 10wt%brine with 3.3kgm^(-2)h^(-1)under 1-sun irradiation,yielding salt harvesting efficiency of 96.5%,which belongs to the record high of high-salinity systems reported so far and is close to achieving zero liquid discharge.Moreover,the low cost of MF@HPB-PPy_(10)-OA(2.56$m^(-2))suggests its potential application in the practical SVC technique.展开更多
Employing an organic dye salt of trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-methylphridinium tetraphenylbovate (ASPT) as the active layer, 8-hydrocyquinoline aluminium (Alq3) as the electron transport...Employing an organic dye salt of trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-methylphridinium tetraphenylbovate (ASPT) as the active layer, 8-hydrocyquinoline aluminium (Alq3) as the electron transporting layer and N, N'-diphenyl-N, N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine (TPD) as the hole transporting layer, respectively, we fabricate a multi-layered organic light-emitting diode and observe the colour tunable electroluminescence (EL). The dependence of the EL spectra on the applied voltage is investigated in detail, and the recombination mechanism is discussed by considering the variation of the hole-electron recombination region.展开更多
基金supported by the National Natural Science Foundation of China Overseas and Hong Kong-Macao Scholars Collaborative Research Fund(Grant No.31728003)the Shanghai University Distinguished Professor(Oriental Scholars)Program(Grant No.JZ2016006)
文摘Coastal blue carbon refers to the carbon taken from atmospheric CO2; fixed by advanced plants(including salt marsh,mangrove, and seagrass), phytoplankton, macroalgae, and marine calcifiers via the interaction of plants and microbes; and stored in nearshore sediments and soils; as well as the carbon transported from the coast to the ocean and ocean floor. The carbon sequestration capacity per unit area of coastal blue carbon is far greater than that of the terrestrial carbon pool. The mechanisms and controls of the carbon sink from salt marshes, mangroves, seagrasses, the aquaculture of shellfish and macroalgae, and the microbial carbon pump need to be further studied. The methods to quantify coastal blue carbon include carbon flux measurements, carbon pool measurements, manipulative experiments, and modeling. Restoring, conserving, and enhancing blue carbon will increase carbon sinks and produce carbon credits, which could be traded on the carbon market. The need to tackle climate change and implement China's commitment to cut carbon emissions requires us to improve studies on coastal blue carbon science and policy. The knowledge learned from coastal blue carbon improves the conservation and restoration of salt marshes,mangroves, and seagrasses; enhances the function of the microbial carbon pump; and promotes sustainable aquaculture, such as ocean ranching.
基金financially supported by the National Key Basic Research Program of China(grant no.2020YFA0406101)National Natural Science Foundation of China(grant nos.22171041,22071020,21901035,22271043)+1 种基金Natural Science Foundation of Jilin Province Science and Technology Department(grant nos.20230508094RC,20220101045JC)the Fundamental Research Funds for the Central Universities(grant no.2412021QD008)
文摘Solar vapor generation(SVC)represents a promising technique for seawater desalination to alleviate the global water crisis and energy shortage.One of its main bottleneck problems is that the evaporation efficiency and stability are limited by salt crystallization under high-salinity brines.Herein,we demonstrate that the 3D porous melamine-foam(MF)wrapped by a type of self-assembling composite materials based on reduced polyoxometalates(i.e.heteropoly blue,HPB),oleic acid(OA),and polypyrrole(PPy)(labeled with MF@HPB-PPy_(n)-OA)can serve as efficient and stable SVC material at high salinity.Structural characterizations of MF@HPB-PPy_(n)-OA indicate that both hydrophilic region of HPBs and hydrophobic region of OA co-exist on the surface of composite materials,optimizing the hydrophilic and hydrophobic interfaces of the SVC materials,and fully exerting its functionality for ultrahigh water-evaporation and anti-salt fouling.The optimal MF@HPB-PPy_(10)-OA operates continuously and stably for over 100 h in 10wt%brine.Furthermore,MF@HPB-PPy_(10)-OA accomplishes complete salt-water separation of 10wt%brine with 3.3kgm^(-2)h^(-1)under 1-sun irradiation,yielding salt harvesting efficiency of 96.5%,which belongs to the record high of high-salinity systems reported so far and is close to achieving zero liquid discharge.Moreover,the low cost of MF@HPB-PPy_(10)-OA(2.56$m^(-2))suggests its potential application in the practical SVC technique.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60125513, 10474010, and 10274009, and the Jiangsu High-Technology Program under Grant No BG2003032.
文摘Employing an organic dye salt of trans-4-[p-[N-methyl-N-(hydroxymethyl)amino]styryl]-N-methylphridinium tetraphenylbovate (ASPT) as the active layer, 8-hydrocyquinoline aluminium (Alq3) as the electron transporting layer and N, N'-diphenyl-N, N'-bis(3-methylphenyl)-[1,1'-biphenyl]-4,4'-diamine (TPD) as the hole transporting layer, respectively, we fabricate a multi-layered organic light-emitting diode and observe the colour tunable electroluminescence (EL). The dependence of the EL spectra on the applied voltage is investigated in detail, and the recombination mechanism is discussed by considering the variation of the hole-electron recombination region.