Mn^3+ and Bi^3+ co-doped Y6WO12 samples with hexagonal structure were synthesized via an improved salt pyrogenation method at a temperature region of 700-1100 ℃ for 3 h. In Y6WO12, Mn^3+, substituting y^3+, occup...Mn^3+ and Bi^3+ co-doped Y6WO12 samples with hexagonal structure were synthesized via an improved salt pyrogenation method at a temperature region of 700-1100 ℃ for 3 h. In Y6WO12, Mn^3+, substituting y^3+, occupies a seven-coordination site and its energy levels are treated in near Oh symmetry. The samples doped by Mn^3+ alone emit the most intensive blue light at 420 nm under excitation at 247 nm due to charge transition (CT). The mechanism of sensitization of Bi^3+ for Y6WO12:Mn^3+ was also analyzed by taking account of metal-to-metal chargetransfer (MMCT) from Bi^3+ to Mn^3+. As a consequence, the phosphor Y6WO12:Mn^3+/Bi^3+ can emit blue light under radiation of 370 nm, and the emission intensity is enhanced about five times by the sensitizer Bi^3+. The optimal doping concentration of Bi^3+ is determined as 1 at% for the emission at 420 nm in Y6WO12:0.5 at% Mn^3+ phosphors.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51401130 and 51704064)Program for Liaoning Innovative Research Team in University (No. LT2015020)+2 种基金Hebei Province Higher Education Science and Technology Research Project (No. ZD2017309)Scientific and Technological Research and Development Plan of Qinhuangdao City (No. 201701B063)Northeastern University at Qinhuangdao Campus Research Fund (No. XNK201602)
文摘Mn^3+ and Bi^3+ co-doped Y6WO12 samples with hexagonal structure were synthesized via an improved salt pyrogenation method at a temperature region of 700-1100 ℃ for 3 h. In Y6WO12, Mn^3+, substituting y^3+, occupies a seven-coordination site and its energy levels are treated in near Oh symmetry. The samples doped by Mn^3+ alone emit the most intensive blue light at 420 nm under excitation at 247 nm due to charge transition (CT). The mechanism of sensitization of Bi^3+ for Y6WO12:Mn^3+ was also analyzed by taking account of metal-to-metal chargetransfer (MMCT) from Bi^3+ to Mn^3+. As a consequence, the phosphor Y6WO12:Mn^3+/Bi^3+ can emit blue light under radiation of 370 nm, and the emission intensity is enhanced about five times by the sensitizer Bi^3+. The optimal doping concentration of Bi^3+ is determined as 1 at% for the emission at 420 nm in Y6WO12:0.5 at% Mn^3+ phosphors.