More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontane...More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontaneous acquisition of proteinaceous “conditioning films” of differing degrees of denaturation but usually of the same substances within any given system. This led to the understanding that useful engineering control of such interactions could thus be manifested through adjustments to those surface properties, giving significant control and utility to the biomaterials developer without requiring detailed discovery of the biological specifications of the components involved. Thus, effective selection of adhesive versus abhesive (non-stick, non-retention) outcomes for such useful appliances as dental implants versus substitute blood vessels, or water-resistant bonded structures versus clean, nontoxic ship bottoms is now facilitated with little biological background required. A historical overview is presented, followed by a brief survey of the forces involved and most useful analyses applied. Utility for blood-contacting materials is described in contrast to utility for bone- and tissue-contacting materials, demonstrating practical uses in controlling cell-surface interactions and preventing biofouling. New research directions being explored are noted, urging applications of this prior knowledge to replace the use of toxicants.展开更多
Thrombus formation in the artificial heart blood pump is a complex problem. The most important factor of thrombosis in the blood pump is the quality of blood contacting surface which is related to hemocompatibility of...Thrombus formation in the artificial heart blood pump is a complex problem. The most important factor of thrombosis in the blood pump is the quality of blood contacting surface which is related to hemocompatibility of materials and micromorphololgy or roughness of the surface. So it is necessary to understand the morphology of the surface inside of blood pump in order to develop and improve a good quality blood pump. The authors observed and analysed the inner surface of blood pumps (both preimplanted and postimplanted) with scanning electron microscopy (SEM) providing a means for evaluating the blood pumps and for developing good quality of blood pumps. It was observed that there were four kinds of surface defects on the inner surface of the blood pumps: air bubble domes, open bubble craters, contaminated dust and gel particles. Microcrakes had also been found on the diaphragm of the postimplanted pump. But in the newly improved blood pump that had been imlanted for 16 days, there were few defects on the blood contacting surface, and only a little fibrinous layer observed. It could be considered that the current design and modifications are reasonable. Since some problems associated with the surface defects and thrombosis still existed, further improvement in fabrication process and quality control procedures with SEM are under way.展开更多
文摘More than 50 years have passed since it was first recognized that the surface properties, and predominantly the surface energies of materials controlled their interactions with all biological phases via their spontaneous acquisition of proteinaceous “conditioning films” of differing degrees of denaturation but usually of the same substances within any given system. This led to the understanding that useful engineering control of such interactions could thus be manifested through adjustments to those surface properties, giving significant control and utility to the biomaterials developer without requiring detailed discovery of the biological specifications of the components involved. Thus, effective selection of adhesive versus abhesive (non-stick, non-retention) outcomes for such useful appliances as dental implants versus substitute blood vessels, or water-resistant bonded structures versus clean, nontoxic ship bottoms is now facilitated with little biological background required. A historical overview is presented, followed by a brief survey of the forces involved and most useful analyses applied. Utility for blood-contacting materials is described in contrast to utility for bone- and tissue-contacting materials, demonstrating practical uses in controlling cell-surface interactions and preventing biofouling. New research directions being explored are noted, urging applications of this prior knowledge to replace the use of toxicants.
文摘Thrombus formation in the artificial heart blood pump is a complex problem. The most important factor of thrombosis in the blood pump is the quality of blood contacting surface which is related to hemocompatibility of materials and micromorphololgy or roughness of the surface. So it is necessary to understand the morphology of the surface inside of blood pump in order to develop and improve a good quality blood pump. The authors observed and analysed the inner surface of blood pumps (both preimplanted and postimplanted) with scanning electron microscopy (SEM) providing a means for evaluating the blood pumps and for developing good quality of blood pumps. It was observed that there were four kinds of surface defects on the inner surface of the blood pumps: air bubble domes, open bubble craters, contaminated dust and gel particles. Microcrakes had also been found on the diaphragm of the postimplanted pump. But in the newly improved blood pump that had been imlanted for 16 days, there were few defects on the blood contacting surface, and only a little fibrinous layer observed. It could be considered that the current design and modifications are reasonable. Since some problems associated with the surface defects and thrombosis still existed, further improvement in fabrication process and quality control procedures with SEM are under way.