In this paper,the authors discuss a three-dimensional problem of the semiconductor device type involved its mathematical description,numerical simulation and theoretical analysis.Two important factors,heat and magneti...In this paper,the authors discuss a three-dimensional problem of the semiconductor device type involved its mathematical description,numerical simulation and theoretical analysis.Two important factors,heat and magnetic influences are involved.The mathematical model is formulated by four nonlinear partial differential equations(PDEs),determining four major physical variables.The influences of magnetic fields are supposed to be weak,and the strength is parallel to the z-axis.The elliptic equation is treated by a block-centered method,and the law of conservation is preserved.The computational accuracy is improved one order.Other equations are convection-dominated,thus are approximated by upwind block-centered differences.Upwind difference can eliminate numerical dispersion and nonphysical oscillation.The diffusion is approximated by the block-centered difference,while the convection term is treated by upwind approximation.Furthermore,the unknowns and adjoint functions are computed at the same time.These characters play important roles in numerical computations of conductor device problems.Using the theories of priori analysis such as energy estimates,the principle of duality and mathematical inductions,an optimal estimates result is obtained.Then a composite numerical method is shown for solving this problem.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11871312)Natural Science Foundation of Shandong Province(Grant No.ZR2021MA019).
文摘In this paper,the authors discuss a three-dimensional problem of the semiconductor device type involved its mathematical description,numerical simulation and theoretical analysis.Two important factors,heat and magnetic influences are involved.The mathematical model is formulated by four nonlinear partial differential equations(PDEs),determining four major physical variables.The influences of magnetic fields are supposed to be weak,and the strength is parallel to the z-axis.The elliptic equation is treated by a block-centered method,and the law of conservation is preserved.The computational accuracy is improved one order.Other equations are convection-dominated,thus are approximated by upwind block-centered differences.Upwind difference can eliminate numerical dispersion and nonphysical oscillation.The diffusion is approximated by the block-centered difference,while the convection term is treated by upwind approximation.Furthermore,the unknowns and adjoint functions are computed at the same time.These characters play important roles in numerical computations of conductor device problems.Using the theories of priori analysis such as energy estimates,the principle of duality and mathematical inductions,an optimal estimates result is obtained.Then a composite numerical method is shown for solving this problem.