Synthesis of diverse polythioimidocarbonates via ring-opening copolymerization of epoxides and isothiocyanates catalyzed by organoboron catalyst was reported herein.Both aromatic and aliphatic isothiocyanates underwen...Synthesis of diverse polythioimidocarbonates via ring-opening copolymerization of epoxides and isothiocyanates catalyzed by organoboron catalyst was reported herein.Both aromatic and aliphatic isothiocyanates underwent successful copolymerization with terminal and internal epoxides,allowing for the precise tuning of the performance of the resultant copolymers over a broad range.The wide scope of available isothiocyanates and epoxides enables the direct construction of sulfur-containing functional polymers featuring both high glass transition temperature and refractive index.Additionally,it was observed that aromatic isothiocyanates polymerize much faster than aliphatic ones,and the reactivity difference facilitated the one-step synthesis of block polymers from mixed aromatic isothiocyanates,aliphatic isothiocyanates and epoxides due to the preferential incorporation of aromatic isothiocyanates over the aliphatic analogues during their alternating copolymerization with epoxides.The produced polythioimidocarbonates can be used as positive resists for electron beam lithography(sensitivity of 130μC/cm^(2) and contrast of 1.53 for poly(CHO-alt-EITC)).Coupling with their high refractive index(1.58—1.68),polythioimidocarbonates might find functional applications in optics.These results render ring-opening copolymerization of epoxides and isothiocyanates a facile route to enrich functional polymer library.展开更多
Developing advanced technologies to address the bacterial associated infections is an urgent requirement for metallic implants and devices.Here,we report a novel phosphonate/quaternary amine block polymer as the high-...Developing advanced technologies to address the bacterial associated infections is an urgent requirement for metallic implants and devices.Here,we report a novel phosphonate/quaternary amine block polymer as the high-efficiency antibacterial coating for metallic substrates.Three pDEMMP-b-pTMAEMA block polymers that bearing identical phosphonate segments(repeat units of 15)but varied cationic segments(repeat units of 8,45,and 70)were precisely prepared.Stable cationic polymer coatings were constructed on TC4 substrates based on the strong covalent binding between phosphonate group and metallic substrate.Robust relationship between the segment chain length of the polymer coating and the antibacterial property endowed to the substrates have been established based on quantitative and qualitative evaluations.Results showed that the antibacterial rate of the modified TC4 surface were 95.8%of S.aureus and 92.9%of E.coli cells attached.Interestingly,unlike the cationic free polymer or cationic hydrogels,the surface anchored cationic polymers do compromise the viability of the attached C2C12 cells but without significant cytotoxicity.In addition,the phosphonate/quate rnary amine block polymers can be easily constructed on titanium,stainless steel,and Ni/Cr alloy with significantly improved antibacterial property,indicating the generality of the block polymer for surface antibacterial modification of bio-metals.展开更多
The development of donor-acceptor(D-A)type conjugated polymers depends largely on the design of novel A building blocks.Herein,we report a novel A building block based on the cyano-substituted organoboron unit(SBN-3)....The development of donor-acceptor(D-A)type conjugated polymers depends largely on the design of novel A building blocks.Herein,we report a novel A building block based on the cyano-substituted organoboron unit(SBN-3).Compared with the most common fluorine-substituted B←N unit,SBN-3 displays a significantly downshifted LUMO energy level because of the strong electron-withdrawing ability of cyano groups.In addition,due to the greater impact of cyano substitution on LUMO than on HOMO,SBN-3 exhibits a reduced band gap,nearinfrared absorption and fluorescence properties.The D-A type conjugated polymers based on the cyano-substituted B←N unit with thiophene-based units show narrow optical band gaps of ca.1.3 e V as well as distinctive electronic structures,i.e.,delocalized LUMOs and localized HOMOs.This work thus provides not only an effective approach to design strong A units but also a new electron-deficient building block for D-A type conjugated polymers.展开更多
Nanoprobes that offer both fluorescence imaging(FI)and magnetic resonance imaging(MRI)can provide supplementary information and hold synergistic advantages.However,synthesis of such dual-modality imaging probes that s...Nanoprobes that offer both fluorescence imaging(FI)and magnetic resonance imaging(MRI)can provide supplementary information and hold synergistic advantages.However,synthesis of such dual-modality imaging probes that simultaneously exhibit tunability of functional groups,high stability,great biocompatibility and desired dual-modality imaging results remains challenging.In this study,we used an amphiphilic block polymer from(ethylene glycol)methyl ether methacrylate(OEGMA)and N-(2-hydroxypropyl)methacrylamide(HPMA)derivatives as a carrier to conjugate a MR contrast agent,Gd-DOTA,and a two-photon fluorophore with an aggregation-induced emission(AIE)effect,TPBP,to construct a MR/two-photon fluorescence dual-modality contrast agent,Gd-DOTA-TPBP.Incorporation of gadolinium in the hydrophilic chain segment of the OEGMA-based carrier resulted in a high r_(1)value for Gd-DOTA-TPBP,revealing a great MR imaging resolution.The contrast agent specifically accumulated in the tumor region,allowing a long enhancement duration for vascular and tumor contrast-enhanced MR imaging.Meanwhile,coupling TPBP with AIE properties to the hydrophobic chain segment of the carrier not only improved its water solubility and reduced its cytotoxicity,but also significantly enhanced its imaging performance in an aqueous phase.Gd-DOTA-TPBP was also demonstrated to act as an excellent fluorescence probe for two-photon-excited bioimaging with higher resolution and greater sensitivity than MRI.Since high-resolution,complementary MRI/FI dual-modal images were acquired at both cellular and tissue levels in tumor-bearing mice after application of Gd-DOTA-TPBP,it has great potential in the early phase of disease diagnosis.展开更多
Organized spontaneous emulsification (OSE) produces ordered water-in-oil-in-water (W/O/W) multiple emulsion droplets stabilized by bottlebrush block copolymer (BBCP) surfactants, such as (polynorbornene-g-polystyrene)...Organized spontaneous emulsification (OSE) produces ordered water-in-oil-in-water (W/O/W) multiple emulsion droplets stabilized by bottlebrush block copolymer (BBCP) surfactants, such as (polynorbornene-g-polystyrene)-b-(polynorbornene-g-polyethylene oxide) (PS-b-PEO), templating ordered porous particles with visible structural colors. Here, homopolymer polystyrenes (hPS) were used to swell the PS domain and thus to effectively increase the W/O interfacial curvature of the internal droplets. By variation of hPS concentration, pore diameter is largely tunable from 34 to over 210 nm, leading to tunable photonic bandgaps in the whole visible spectrum. The ratio (α) of molecular weight of hPS relative to that of the PS side chains of the BBCP can greatly influence their spatial distribution within the PS domain. For α ≤ 1, uniform solubilization of the hPS chains into the side chains of BBCP is achieved leading to a homogeneous porous structure. For α > 1, local solubilization of the hPS chains at interface of the internal droplets is disclosed at relatively low concentrations of hPS (≤ 42 wt%), resulting in a small change in pore diameter. For contrast, a rapid increase of the W/O interfacial curvature was observed upon further increase of the hPS content (> 42 wt%) through an evident influence on the OSE procedure.展开更多
A new A-B-A type of block copolymers,polyacrylonitrile-block-polydimethylsiloxane-block-polyacrylonitrile(PAN-b-PDMSb-PAN),which comprises two polymer blocks of different polarities and compatibilities,were synthesi...A new A-B-A type of block copolymers,polyacrylonitrile-block-polydimethylsiloxane-block-polyacrylonitrile(PAN-b-PDMSb-PAN),which comprises two polymer blocks of different polarities and compatibilities,were synthesized for the first time via reversible addition-fragmentation chain transfer polymerization.Reaction kinetics was investigated.PAN-b-PDMS-b-PAN films were prepared by spin-coating on glass chips.Significant order on the film surface morphologies was observed.展开更多
Kumada chain-growth polycondensation (KCGP) is a novel method for the synthesis of well-defined conjugated polymers.Because the Ni-catalyst can transfer in an intramolecular process to the propagating chain end,the po...Kumada chain-growth polycondensation (KCGP) is a novel method for the synthesis of well-defined conjugated polymers.Because the Ni-catalyst can transfer in an intramolecular process to the propagating chain end,the polymerization follows chain-growth mechanism.With this newly developed method,various conjugated polymers,such as polythiophenes,poly(p-phenylene) (PPP),polypyrrole (PPy),and polyfluorene with controlled molecular weights and relatively narrow polydispersities (PDIs),have been prepared.Especially,the polymerizations for poly(3-alkylthiophene)s (P3ATs),PPP,and PPy exhibited quasi-living characteristics,which allows preparing polymer brushes,fully-conjugated block copolymers,and macroinitiators and macro-reactants for the synthesis of rod-coil block copolymers.In the current review,the progress in this new area is summarized.展开更多
Multiphase copolymers of styrene (S) and ethylene oxide (EO) are amphiphilic, because of the hydrophobic and amorphous polystyrene (PS) segments and the hydrophilic and crystalline polyoxyethylene (PEO). They have man...Multiphase copolymers of styrene (S) and ethylene oxide (EO) are amphiphilic, because of the hydrophobic and amorphous polystyrene (PS) segments and the hydrophilic and crystalline polyoxyethylene (PEO). They have many uses including polymeric surfactants, electrostatic charge reducers, compatibilizer in polymer展开更多
The general strategy to construct D-A type conjugated polymers is alternating copolymerization of electron-donating(D)monomer and electron-accepting(A)monomer.In this article,we report a new strategy to develop D-A ty...The general strategy to construct D-A type conjugated polymers is alternating copolymerization of electron-donating(D)monomer and electron-accepting(A)monomer.In this article,we report a new strategy to develop D-A type conjugated polymers,i.e.first fuse the D and A units into a polycyclic structure to produce a building block and then polymerize the building block with another unit.We develop a new building block with ladder structure based on B←N unit,B←N bridged dipyridylbenzene(BNDPB).In the skeleton of BNDPB,one diamine-substituted phenylene ring(D unit)and two B←N-linked pyridyl rings(A unit)are fused together to produce the polycyclic structure.Owning to the presence of intramolecular D-A character,the building block itself exhibits narrow bandgap of 1.74 eV.The conjugated polymers based on BNDPB show unique electronic structures,i.e.localized HOMOs and delocalized LUMOs,which are rarely observed for conventional D-A conjugated polymers.The polymers exhibit smaller bandgap than that of the building block BNDPB and display near-infrared(NIR)light absorption(λabs=ca.700 nm).This study thus provides not only a new strategy to design D-A conjugated polymers but also a new kind of building block with narrow bandgap.展开更多
This contribution shows the strong influence of using chloroform instead of THF on the characteristics of thin films of supramolecular block copolymers of poly(styrene-b-4-vinyl pyridine) dip-coated in the so-called &...This contribution shows the strong influence of using chloroform instead of THF on the characteristics of thin films of supramolecular block copolymers of poly(styrene-b-4-vinyl pyridine) dip-coated in the so-called "capillarity" regime from solutions containing 1-naphthol or 1-naphthoic acid.The small molecule content in the dip-coated films was investigated by infrared spectroscopy and the film morphology by atomic force microscopy.It was found that the small molecule content in the films is constant with dip-coating rate in the range investigated,but it is higher for 1-naphthoic acid than for 1-naphthol.The main morphology observed was in the form of "islands" and "holes",which is typical of flat-on lamellae.These findings are related to hydrogen-bonding between the small molecule and pyridine being conserved in chloroform and to the good solubility of both blocks in this solvent,with differences between the two small molecules related to their differing H-bond strengths.These findings contrast strongly with what was observed previously using THF as a solvent,for which the SM content increases with dip-coating rate and the morphologies are mainly spherical and cylindrical in the same parameter range.展开更多
基金supported by the National Natural Science Foundation of China(Grants 51973186 and 22101253)the National Science Fund for Distinguished Young Scholars(No.T2225004).
文摘Synthesis of diverse polythioimidocarbonates via ring-opening copolymerization of epoxides and isothiocyanates catalyzed by organoboron catalyst was reported herein.Both aromatic and aliphatic isothiocyanates underwent successful copolymerization with terminal and internal epoxides,allowing for the precise tuning of the performance of the resultant copolymers over a broad range.The wide scope of available isothiocyanates and epoxides enables the direct construction of sulfur-containing functional polymers featuring both high glass transition temperature and refractive index.Additionally,it was observed that aromatic isothiocyanates polymerize much faster than aliphatic ones,and the reactivity difference facilitated the one-step synthesis of block polymers from mixed aromatic isothiocyanates,aliphatic isothiocyanates and epoxides due to the preferential incorporation of aromatic isothiocyanates over the aliphatic analogues during their alternating copolymerization with epoxides.The produced polythioimidocarbonates can be used as positive resists for electron beam lithography(sensitivity of 130μC/cm^(2) and contrast of 1.53 for poly(CHO-alt-EITC)).Coupling with their high refractive index(1.58—1.68),polythioimidocarbonates might find functional applications in optics.These results render ring-opening copolymerization of epoxides and isothiocyanates a facile route to enrich functional polymer library.
基金the grant supports from the National Natural Science Foundation of China(No.21504046)the Six Talent Peaks Project in Jiangsu Province(SWYY-060)+1 种基金the Projects of Nanjing Normal University(No.184080H20192184080H10386)。
文摘Developing advanced technologies to address the bacterial associated infections is an urgent requirement for metallic implants and devices.Here,we report a novel phosphonate/quaternary amine block polymer as the high-efficiency antibacterial coating for metallic substrates.Three pDEMMP-b-pTMAEMA block polymers that bearing identical phosphonate segments(repeat units of 15)but varied cationic segments(repeat units of 8,45,and 70)were precisely prepared.Stable cationic polymer coatings were constructed on TC4 substrates based on the strong covalent binding between phosphonate group and metallic substrate.Robust relationship between the segment chain length of the polymer coating and the antibacterial property endowed to the substrates have been established based on quantitative and qualitative evaluations.Results showed that the antibacterial rate of the modified TC4 surface were 95.8%of S.aureus and 92.9%of E.coli cells attached.Interestingly,unlike the cationic free polymer or cationic hydrogels,the surface anchored cationic polymers do compromise the viability of the attached C2C12 cells but without significant cytotoxicity.In addition,the phosphonate/quate rnary amine block polymers can be easily constructed on titanium,stainless steel,and Ni/Cr alloy with significantly improved antibacterial property,indicating the generality of the block polymer for surface antibacterial modification of bio-metals.
基金financially supported by the National Natural Science Foundation of China(Nos.22135007,21875244 and 52073281)Jilin Scientific and Technological Development Program(No.YDZJ202101ZYTS138)。
文摘The development of donor-acceptor(D-A)type conjugated polymers depends largely on the design of novel A building blocks.Herein,we report a novel A building block based on the cyano-substituted organoboron unit(SBN-3).Compared with the most common fluorine-substituted B←N unit,SBN-3 displays a significantly downshifted LUMO energy level because of the strong electron-withdrawing ability of cyano groups.In addition,due to the greater impact of cyano substitution on LUMO than on HOMO,SBN-3 exhibits a reduced band gap,nearinfrared absorption and fluorescence properties.The D-A type conjugated polymers based on the cyano-substituted B←N unit with thiophene-based units show narrow optical band gaps of ca.1.3 e V as well as distinctive electronic structures,i.e.,delocalized LUMOs and localized HOMOs.This work thus provides not only an effective approach to design strong A units but also a new electron-deficient building block for D-A type conjugated polymers.
基金supported by National Natural Science Foundation of China(52073193,51873120,81621003,51903173)1⋅3⋅5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(ZYJC21013)+1 种基金Science and Technology Program of Sichuan province(2020YJ0231)China Postdoctoral Science Foundation(2021M692255).
文摘Nanoprobes that offer both fluorescence imaging(FI)and magnetic resonance imaging(MRI)can provide supplementary information and hold synergistic advantages.However,synthesis of such dual-modality imaging probes that simultaneously exhibit tunability of functional groups,high stability,great biocompatibility and desired dual-modality imaging results remains challenging.In this study,we used an amphiphilic block polymer from(ethylene glycol)methyl ether methacrylate(OEGMA)and N-(2-hydroxypropyl)methacrylamide(HPMA)derivatives as a carrier to conjugate a MR contrast agent,Gd-DOTA,and a two-photon fluorophore with an aggregation-induced emission(AIE)effect,TPBP,to construct a MR/two-photon fluorescence dual-modality contrast agent,Gd-DOTA-TPBP.Incorporation of gadolinium in the hydrophilic chain segment of the OEGMA-based carrier resulted in a high r_(1)value for Gd-DOTA-TPBP,revealing a great MR imaging resolution.The contrast agent specifically accumulated in the tumor region,allowing a long enhancement duration for vascular and tumor contrast-enhanced MR imaging.Meanwhile,coupling TPBP with AIE properties to the hydrophobic chain segment of the carrier not only improved its water solubility and reduced its cytotoxicity,but also significantly enhanced its imaging performance in an aqueous phase.Gd-DOTA-TPBP was also demonstrated to act as an excellent fluorescence probe for two-photon-excited bioimaging with higher resolution and greater sensitivity than MRI.Since high-resolution,complementary MRI/FI dual-modal images were acquired at both cellular and tissue levels in tumor-bearing mice after application of Gd-DOTA-TPBP,it has great potential in the early phase of disease diagnosis.
基金supported financially by the National Natural Science Foundation of China(Grant No.22071176&52273214).
文摘Organized spontaneous emulsification (OSE) produces ordered water-in-oil-in-water (W/O/W) multiple emulsion droplets stabilized by bottlebrush block copolymer (BBCP) surfactants, such as (polynorbornene-g-polystyrene)-b-(polynorbornene-g-polyethylene oxide) (PS-b-PEO), templating ordered porous particles with visible structural colors. Here, homopolymer polystyrenes (hPS) were used to swell the PS domain and thus to effectively increase the W/O interfacial curvature of the internal droplets. By variation of hPS concentration, pore diameter is largely tunable from 34 to over 210 nm, leading to tunable photonic bandgaps in the whole visible spectrum. The ratio (α) of molecular weight of hPS relative to that of the PS side chains of the BBCP can greatly influence their spatial distribution within the PS domain. For α ≤ 1, uniform solubilization of the hPS chains into the side chains of BBCP is achieved leading to a homogeneous porous structure. For α > 1, local solubilization of the hPS chains at interface of the internal droplets is disclosed at relatively low concentrations of hPS (≤ 42 wt%), resulting in a small change in pore diameter. For contrast, a rapid increase of the W/O interfacial curvature was observed upon further increase of the hPS content (> 42 wt%) through an evident influence on the OSE procedure.
基金supported by the National Natural Science Foundation of China (No. 20874057)the Key Natural Science Foundation of Shandong Province of China (No. ZR2011BZ001)
文摘A new A-B-A type of block copolymers,polyacrylonitrile-block-polydimethylsiloxane-block-polyacrylonitrile(PAN-b-PDMSb-PAN),which comprises two polymer blocks of different polarities and compatibilities,were synthesized for the first time via reversible addition-fragmentation chain transfer polymerization.Reaction kinetics was investigated.PAN-b-PDMS-b-PAN films were prepared by spin-coating on glass chips.Significant order on the film surface morphologies was observed.
基金supported by the National Natural Science Foundation of China (20921061,20923003 & 50833004)the National Basic Research Program of China (2009CB930603)
文摘Kumada chain-growth polycondensation (KCGP) is a novel method for the synthesis of well-defined conjugated polymers.Because the Ni-catalyst can transfer in an intramolecular process to the propagating chain end,the polymerization follows chain-growth mechanism.With this newly developed method,various conjugated polymers,such as polythiophenes,poly(p-phenylene) (PPP),polypyrrole (PPy),and polyfluorene with controlled molecular weights and relatively narrow polydispersities (PDIs),have been prepared.Especially,the polymerizations for poly(3-alkylthiophene)s (P3ATs),PPP,and PPy exhibited quasi-living characteristics,which allows preparing polymer brushes,fully-conjugated block copolymers,and macroinitiators and macro-reactants for the synthesis of rod-coil block copolymers.In the current review,the progress in this new area is summarized.
文摘Multiphase copolymers of styrene (S) and ethylene oxide (EO) are amphiphilic, because of the hydrophobic and amorphous polystyrene (PS) segments and the hydrophilic and crystalline polyoxyethylene (PEO). They have many uses including polymeric surfactants, electrostatic charge reducers, compatibilizer in polymer
基金supported by the National Natural Science Foundation of China (21625403, 21822507, 21875244, 21761132020, 21574129)National Key Research and Development Program of China (2018YFE0100600)+2 种基金funded by MOST and Strategic Priority Research Program of CAS (XDB12010200)Youth Innovation Promotion Association of CAS (2017265)State Key Laboratory of Supramolecular Structure and Materials in Jilin University (sklssm201905)
文摘The general strategy to construct D-A type conjugated polymers is alternating copolymerization of electron-donating(D)monomer and electron-accepting(A)monomer.In this article,we report a new strategy to develop D-A type conjugated polymers,i.e.first fuse the D and A units into a polycyclic structure to produce a building block and then polymerize the building block with another unit.We develop a new building block with ladder structure based on B←N unit,B←N bridged dipyridylbenzene(BNDPB).In the skeleton of BNDPB,one diamine-substituted phenylene ring(D unit)and two B←N-linked pyridyl rings(A unit)are fused together to produce the polycyclic structure.Owning to the presence of intramolecular D-A character,the building block itself exhibits narrow bandgap of 1.74 eV.The conjugated polymers based on BNDPB show unique electronic structures,i.e.localized HOMOs and delocalized LUMOs,which are rarely observed for conventional D-A conjugated polymers.The polymers exhibit smaller bandgap than that of the building block BNDPB and display near-infrared(NIR)light absorption(λabs=ca.700 nm).This study thus provides not only a new strategy to design D-A conjugated polymers but also a new kind of building block with narrow bandgap.
基金supported by the Natural Sciences and Engineering Council of Canada (NSERC)the Fonds de recherche du Québec-Nature et Technologies (FQRNT)
文摘This contribution shows the strong influence of using chloroform instead of THF on the characteristics of thin films of supramolecular block copolymers of poly(styrene-b-4-vinyl pyridine) dip-coated in the so-called "capillarity" regime from solutions containing 1-naphthol or 1-naphthoic acid.The small molecule content in the dip-coated films was investigated by infrared spectroscopy and the film morphology by atomic force microscopy.It was found that the small molecule content in the films is constant with dip-coating rate in the range investigated,but it is higher for 1-naphthoic acid than for 1-naphthol.The main morphology observed was in the form of "islands" and "holes",which is typical of flat-on lamellae.These findings are related to hydrogen-bonding between the small molecule and pyridine being conserved in chloroform and to the good solubility of both blocks in this solvent,with differences between the two small molecules related to their differing H-bond strengths.These findings contrast strongly with what was observed previously using THF as a solvent,for which the SM content increases with dip-coating rate and the morphologies are mainly spherical and cylindrical in the same parameter range.