In order to obtain the desired final shape, the blade precision forging requires a reasonable preformed billet which can be obtained from a given final shape by using backward tracing scheme based on FEM. The key tech...In order to obtain the desired final shape, the blade precision forging requires a reasonable preformed billet which can be obtained from a given final shape by using backward tracing scheme based on FEM. The key technologies of backward tracing scheme based on 3D rigid-viscoplastic FEM were explored, and some valid algorithms or methods were proposed. A velocity field was generated by combining the direct iterative method with Newton-Raphson iterative method, and then the initial velocity field of backward tracing simulation was achieved by reversing the direction of the velocity field. A new method, namely the tracking-fitting-revising method, was proposed and can be used to determinate the criterion of separating a node from die in the backward tracing simulation. The ceasing criterion of the backward tracing simulation is that all the boundary nodes are detached from dies. Based on the above key technologies, the 3D backward tracing simulation system for the blade precision forging was developed, and its feasibility and reliability were verified by forward loading simulation.展开更多
Blade precision forging is a high temperature and large plastic deformation process. Process parameters have a great effect on temperature distribution in billet, so in this paper, by taking a Ti-6Al-4V alloy blade wi...Blade precision forging is a high temperature and large plastic deformation process. Process parameters have a great effect on temperature distribution in billet, so in this paper, by taking a Ti-6Al-4V alloy blade with a tenon as an object, the influence of process parameters on the temperature distribution in precision forging process was investigated using 3D coupled thermo-mechanical FEM (finite element method) code developed by the authors. The results obtained illustrate that: (1) the gradient of temperature distribution increases with increasing the deformation degree; (2) with increasing the initial temperature of the billet, the zones of high temperature become larger, and the gradient of temperature distribution hardly has any increase; (3) friction factors have little effect on the distribution of temperature field; (4) with increasing upper die velocity, temperature of the billet increases while the temperature gradient in billet decreases. The results are helpful to the design and optimization of the process parameters in precision forging process of Ti-alloy blade.展开更多
基金Project(50225518) supported by the National Science Foundation of China for Distinguished Young Scholars Project(02H53061) supported by the Aeronautical Science Foundation of China Project(05-1) supported by the Foundation of State Key Laboratory of Plastic Forming Simulation and Mould Technology
文摘In order to obtain the desired final shape, the blade precision forging requires a reasonable preformed billet which can be obtained from a given final shape by using backward tracing scheme based on FEM. The key technologies of backward tracing scheme based on 3D rigid-viscoplastic FEM were explored, and some valid algorithms or methods were proposed. A velocity field was generated by combining the direct iterative method with Newton-Raphson iterative method, and then the initial velocity field of backward tracing simulation was achieved by reversing the direction of the velocity field. A new method, namely the tracking-fitting-revising method, was proposed and can be used to determinate the criterion of separating a node from die in the backward tracing simulation. The ceasing criterion of the backward tracing simulation is that all the boundary nodes are detached from dies. Based on the above key technologies, the 3D backward tracing simulation system for the blade precision forging was developed, and its feasibility and reliability were verified by forward loading simulation.
基金Supported by the National Science Foundation of China for Distinguished Young Scholars (50225518)the Aeronautical Science Foundation of China(02H53061)+1 种基金the Natural Science Foundation of Shanxi Province (2001CS0401)the Doctorate Foundation of Northwestern Polytechnical University (CX200405).
基金The authors express their appreciation for the financial support of the Aeronautical Science Foundation of China (No. 02H53061) the National Natural Science Foundation of China for Distinguished Young Scholar (No. 50225518) the Innovation Foundation of Ph.D. Dissertation in NPU of China (No. CX200405).
文摘Blade precision forging is a high temperature and large plastic deformation process. Process parameters have a great effect on temperature distribution in billet, so in this paper, by taking a Ti-6Al-4V alloy blade with a tenon as an object, the influence of process parameters on the temperature distribution in precision forging process was investigated using 3D coupled thermo-mechanical FEM (finite element method) code developed by the authors. The results obtained illustrate that: (1) the gradient of temperature distribution increases with increasing the deformation degree; (2) with increasing the initial temperature of the billet, the zones of high temperature become larger, and the gradient of temperature distribution hardly has any increase; (3) friction factors have little effect on the distribution of temperature field; (4) with increasing upper die velocity, temperature of the billet increases while the temperature gradient in billet decreases. The results are helpful to the design and optimization of the process parameters in precision forging process of Ti-alloy blade.