Cavitation in pumps must be detected and prevented. The present work is an attempt to use the simultaneous measurements of vibration and sound for variable speed pump to detect cavitation. It is an attempt to declare ...Cavitation in pumps must be detected and prevented. The present work is an attempt to use the simultaneous measurements of vibration and sound for variable speed pump to detect cavitation. It is an attempt to declare the relationship between the vibration and sound for the same discharge of 780 L/h and NPSHA of 0.754 at variable speeds of 1476 rpm, 1644 rpm, 1932 rpm, 2190 rpm, 2466 rpm, and 2682 rpm. Results showed that: the occurrence of cavitation depends on the rotational speed, and the sound signals in both no cavitation and cavitation conditions appear in random manner. While, surveying the vibration and sound spectrums at the second, third, and fourth blade passing frequencies reveals no indications or phenomenon associated with the cavitation at variable speeds. It is recommended to survey the vibration spectra at the rotational and blade passing frequencies simultaneously as a detection unique method of cavitation.展开更多
The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simul...The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simulation was carried out in a single passage of the CRAC. The original transient fluctuation and oscillation of the tip leakage vortex structure with varying flow capacity of the CRAC were revealed using circle-like pattern figure and phase-locked root mean square(PLRMS). Additionally, the tip leakage flow in terms of vortex structure evolution was visualized for the sake of revealing the flow mechanism during pre-stall process. Results show that the unsteady fluctuation first appears at φ=0.3622, and the fluctuation frequency is 2.86 BPF. Unsteady disturbance source is mainly located at the tip side of the downstream rotor leading edge. From the choking point to the near stall condition, tip leakage vortex is always found in the tip leading edge of the upstream rotor. In addition, the tip leakage vortex of upstream rotor remains in the same place over time, i.e., no fluctuation, even when the downstream rotor entered into stall state. Such a phenomenon indicates that the stall point of the contra-rotating compressor is determined by the downstream rotor. Moreover, the maximum fluctuation position is mainly concentrated on the interface between the mainstream and the tip leakage vortex of the downstream rotor. By throttling the compressor, the angle between the main leakage vortex and the circumferential direction decreases gradually. When the main leakage vortex touches and continuously impacts on the leading edge of the adjacent blade, the unsteady disturbance, which is different from that of BPF, appears firstly.展开更多
文摘Cavitation in pumps must be detected and prevented. The present work is an attempt to use the simultaneous measurements of vibration and sound for variable speed pump to detect cavitation. It is an attempt to declare the relationship between the vibration and sound for the same discharge of 780 L/h and NPSHA of 0.754 at variable speeds of 1476 rpm, 1644 rpm, 1932 rpm, 2190 rpm, 2466 rpm, and 2682 rpm. Results showed that: the occurrence of cavitation depends on the rotational speed, and the sound signals in both no cavitation and cavitation conditions appear in random manner. While, surveying the vibration and sound spectrums at the second, third, and fourth blade passing frequencies reveals no indications or phenomenon associated with the cavitation at variable speeds. It is recommended to survey the vibration spectra at the rotational and blade passing frequencies simultaneously as a detection unique method of cavitation.
基金supported by the National Natural Science Foundation of China (No. 51376150)
文摘The present study investigated the spectrum characteristics of unsteady disturbance and the tip leakage vortex evolution during pre-stall process for a contra-rotating axial compressor(CRAC). Transient numerical simulation was carried out in a single passage of the CRAC. The original transient fluctuation and oscillation of the tip leakage vortex structure with varying flow capacity of the CRAC were revealed using circle-like pattern figure and phase-locked root mean square(PLRMS). Additionally, the tip leakage flow in terms of vortex structure evolution was visualized for the sake of revealing the flow mechanism during pre-stall process. Results show that the unsteady fluctuation first appears at φ=0.3622, and the fluctuation frequency is 2.86 BPF. Unsteady disturbance source is mainly located at the tip side of the downstream rotor leading edge. From the choking point to the near stall condition, tip leakage vortex is always found in the tip leading edge of the upstream rotor. In addition, the tip leakage vortex of upstream rotor remains in the same place over time, i.e., no fluctuation, even when the downstream rotor entered into stall state. Such a phenomenon indicates that the stall point of the contra-rotating compressor is determined by the downstream rotor. Moreover, the maximum fluctuation position is mainly concentrated on the interface between the mainstream and the tip leakage vortex of the downstream rotor. By throttling the compressor, the angle between the main leakage vortex and the circumferential direction decreases gradually. When the main leakage vortex touches and continuously impacts on the leading edge of the adjacent blade, the unsteady disturbance, which is different from that of BPF, appears firstly.