Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The pa...Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.展开更多
The potential hazard resulting from uncontained turbine engine rotor blade failure has always been the long-term concern of each aero engine manufacturer, and to fully contain the failed blades under critical operatin...The potential hazard resulting from uncontained turbine engine rotor blade failure has always been the long-term concern of each aero engine manufacturer, and to fully contain the failed blades under critical operating conditions is also one of the most important considerations to meet the rotor integrity requirements. Usually, there are many factors involving the engine containment capability which need to be reviewed during the engine design phases, such as case thickness, rotor support structure, blade weight and shape, etc. However, the premier method to demonstrate the engine containment capability is the fan blade-off test and margin of safety (MS) analysis. Based on a concrete engine model, this paper aims to explain the key points of aero engine containment requirements in FAR Part 33, and introduces the implementation of MS analysis and fan blade-off test in the engine airworthiness certification. Through the introduction, it would be greatly helpful to the industrial community to evaluate the engine containment capability and prepare the final test demonstration in engine certification procedure.展开更多
Aero-engine blade-off event could cause serious malfunction and endanger flight safety,which is an important issue widely concerned for a long period.This paper presents a comprehensive review on the regulation requir...Aero-engine blade-off event could cause serious malfunction and endanger flight safety,which is an important issue widely concerned for a long period.This paper presents a comprehensive review on the regulation requirements,the major research methods and status at home and abroad.Firstly,the relevant certification regulations and standards about aero-engine structure safety due to blade-off event were overviewed and the research gaps between the abroad and the domestic were compared.Then,the simulation and experimental methodologies on aero-engine supporting structures undertake abnormal load due to blade-off event were discussed as major issue.Finally,the safety certification verification technology system for aero-engine support structures during blade-off event was proposed.展开更多
基金the financial support from the National Natural Science Foundation of China(Nos.51575022 and 51475021)
文摘Fan blade off(FBO) from a running turbofan rotor will introduce sudden unbalance into the dynamical system,which will lead to the rub-impact,the asymmetry of rotor and a series of interesting dynamic behavior.The paper first presents a theoretical study on the response excited by sudden unbalance.The results reveal that the reaction force of the bearing located near the fan could always reach a very high value which may lead to the crush of ball,journal sticking,high stress on the other components and some other failures to endanger the safety of engine in FBO event.Therefore,the dynamic influence of a safety design named ‘‘fusing" is investigated by mechanism analysis.Meantime,an explicit FBO model is established to simulate the FBO event,and evaluate the effectiveness and potential dynamic influence of fusing design.The results show that the fusing design could reduce the vibration amplitude of rotor,the reaction force on most bearings and loads on mounts,but the sudden change of support stiffness induced by fusing could produce an impact effect which will couple with the influence of sudden unbalance.Therefore,the implementation of the design should be considered carefully with optimized parameters in actual aero-engine.
文摘The potential hazard resulting from uncontained turbine engine rotor blade failure has always been the long-term concern of each aero engine manufacturer, and to fully contain the failed blades under critical operating conditions is also one of the most important considerations to meet the rotor integrity requirements. Usually, there are many factors involving the engine containment capability which need to be reviewed during the engine design phases, such as case thickness, rotor support structure, blade weight and shape, etc. However, the premier method to demonstrate the engine containment capability is the fan blade-off test and margin of safety (MS) analysis. Based on a concrete engine model, this paper aims to explain the key points of aero engine containment requirements in FAR Part 33, and introduces the implementation of MS analysis and fan blade-off test in the engine airworthiness certification. Through the introduction, it would be greatly helpful to the industrial community to evaluate the engine containment capability and prepare the final test demonstration in engine certification procedure.
文摘Aero-engine blade-off event could cause serious malfunction and endanger flight safety,which is an important issue widely concerned for a long period.This paper presents a comprehensive review on the regulation requirements,the major research methods and status at home and abroad.Firstly,the relevant certification regulations and standards about aero-engine structure safety due to blade-off event were overviewed and the research gaps between the abroad and the domestic were compared.Then,the simulation and experimental methodologies on aero-engine supporting structures undertake abnormal load due to blade-off event were discussed as major issue.Finally,the safety certification verification technology system for aero-engine support structures during blade-off event was proposed.