期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种新型深度分类神经网络黑盒指纹水印算法
1
作者 莫谋科 王春桃 +1 位作者 郭庆文 边山 《应用科学学报》 CAS CSCD 北大核心 2024年第3期486-498,共13页
提出了一种新型的强鲁棒黑盒指纹水印框架及方法。首先,提出了一种基于数字水印技术的高视觉质量的、具有一定安全性的毒化图像构造方法,将指示用户身份的信息嵌入到毒化图像,实现多用户场景下深度神经网络模型的可追溯性,并降低毒化图... 提出了一种新型的强鲁棒黑盒指纹水印框架及方法。首先,提出了一种基于数字水印技术的高视觉质量的、具有一定安全性的毒化图像构造方法,将指示用户身份的信息嵌入到毒化图像,实现多用户场景下深度神经网络模型的可追溯性,并降低毒化图像被伪造的概率;其次,提出了毒化特征加强模块来优化模型训练;最后,设计了对抗训练策略,有效地学习到嵌入强度很小的指纹水印。大量的仿真实验表明,所构造的毒化图像中的指纹水印具有非常好的隐蔽性,大幅超越了WaNet等同类最优模型水印方法;以分类性能降低不超过2.4%的代价获得了超过99%的黑盒模型指纹水印验证率;且即便在指纹水印相差1位时亦能准确地进行模型水印版权验证。这些性能总体上优于同类最优的模型水印方法,表明了所提方法的可行性和有效性。 展开更多
关键词 黑盒模型水印 分类模型 毒化图像 指纹水印 鲁棒性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部