期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进BiSeNet的葡萄黑麻疹病害程度分级预测
1
作者 白春晖 陈健 郜鲁涛 《湖北农业科学》 2024年第5期187-193,222,共8页
为了准确对葡萄(Vitis vinifera L.)黑麻疹病害程度进行分级预测,通过语义分割模型将叶片部分和病斑部分分割出来,以同一叶片上病斑面积与总叶面积的比值作为疾病严重程度分级的依据,对葡萄黑麻疹病害程度进行分级预测。精确标注了Plant... 为了准确对葡萄(Vitis vinifera L.)黑麻疹病害程度进行分级预测,通过语义分割模型将叶片部分和病斑部分分割出来,以同一叶片上病斑面积与总叶面积的比值作为疾病严重程度分级的依据,对葡萄黑麻疹病害程度进行分级预测。精确标注了PlantVillage公开数据库中的419张葡萄疾病图像,细分为背景、叶片和病斑3个类别,并应用了数据增强技术增加样本多样性。以BiSeNet作为基准模型,引入GhostNet作为上下文路径的主干提取网络,不仅保持了较小的模型参数量,而且在精度上实现了明显提升,满足病害程度分级预测的需求。提出了累加空洞空间金字塔池化(CASPP)模块,用来替换BiSeNet模型中单一的上下文嵌入模块,以增强BiSeNet模型的多尺度上下文信息提取能力,提高了模型的分割精度。经过测试,本研究模型在测试集中的平均交并比为94.11%,在对葡萄黑麻疹病害程度进行分级预测时,准确率达98.21%,能够精确地对葡萄黑麻疹病害程度进行分级预测。 展开更多
关键词 BiSeNet 深度学习 语义分割 病害程度 分级预测 葡萄(Vitis vinifera L.) 黑麻疹
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部