To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, spa...To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, space-time clutter model in varying bistatic geometrical scenarios is presented. The inclusive effects of the model contain the range dependency of bistatic clutter spectrum and clutter power variation in range-angle cells. To capture them, a new approach to coordinate system conversion is initiated into formulating bistatic geometrical model, and the bistatic non-Gaussian amplitude clutter representation method based on a compound model is introduced. The veracity of the geometrical model is validated by using the bistatic configuration parameters of multi-channel airborne radar measurement (MCARM) experiment. And simulation results manifest that the proposed model can accurately shape the space-time clutter spectrum tied up with specific airborne bistatic radar scenario and can characterize the heterogeneity of clutter amplitude distribution in practical clutter environments.展开更多
This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic ap...This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR) interferometry. The study of temporal decorrelation is challenging, especially for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry configuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model.The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.展开更多
基金supported by the National Defense Advanced Research Foundation of China (51407020304DZ0223).
文摘To validate the potential space-time adaptive processing (STAP) algorithms for airborne bistatic radar clutter suppression under nonstationary and non-Gaussian clutter environments, a statistically non-Gaussian, space-time clutter model in varying bistatic geometrical scenarios is presented. The inclusive effects of the model contain the range dependency of bistatic clutter spectrum and clutter power variation in range-angle cells. To capture them, a new approach to coordinate system conversion is initiated into formulating bistatic geometrical model, and the bistatic non-Gaussian amplitude clutter representation method based on a compound model is introduced. The veracity of the geometrical model is validated by using the bistatic configuration parameters of multi-channel airborne radar measurement (MCARM) experiment. And simulation results manifest that the proposed model can accurately shape the space-time clutter spectrum tied up with specific airborne bistatic radar scenario and can characterize the heterogeneity of clutter amplitude distribution in practical clutter environments.
基金supported by the National Natural Science Foundation of China(6110117861271441)
文摘This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR) interferometry. The study of temporal decorrelation is challenging, especially for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry configuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model.The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.