研究了一种双极性增益Boost变换器,它不仅具有传统Boost变换器的升压特性,而且具有双极性增益特性,即对于正、负输入电压,均能得到正极性的直流输出电压。因此,该双极性增益Boost变换器可直接用于功率因数校正变换器。本文分析了该双极...研究了一种双极性增益Boost变换器,它不仅具有传统Boost变换器的升压特性,而且具有双极性增益特性,即对于正、负输入电压,均能得到正极性的直流输出电压。因此,该双极性增益Boost变换器可直接用于功率因数校正变换器。本文分析了该双极性增益Boost变换器工作于电感电流连续模式(Continuous Current Mode,CCM)时的工作模态,分析了正、负输入电压情况下,该双极性增益Boost变换器的直流稳态特性,分析结果表明该双极性增益Boost变换器具有与传统Boost变换器相同的升压特性。最后,通过实验验证了理论分析的正确性。展开更多
A unified model of low temperature current gain of polysilicon emitter bipolar transistors based on effective recombination method is presented, incorporating band-gap narrowing, carrier freezing-out, tunneling of hol...A unified model of low temperature current gain of polysilicon emitter bipolar transistors based on effective recombination method is presented, incorporating band-gap narrowing, carrier freezing-out, tunneling of holes through polysilicon/silicon interface oxide layer and reduced mobility mechanism in polysilicon. The modeling results based on this model are in good agreement with experimental data.展开更多
Considering the impacts of ideal factor n, VBE and band gap changes with the temperature on current gain, the current gain expression has been corrected to make the results closer to the actual test. Besides, the acce...Considering the impacts of ideal factor n, VBE and band gap changes with the temperature on current gain, the current gain expression has been corrected to make the results closer to the actual test. Besides, the accelerating lifetime study method in the constant temperature-humidity stress is used to estimate the reliability of the same batch transistors. Applying the revised findings from the expression, the current gains before and after the test are compared and analyzed, and, according to the degradation data of the current gain, the transistor lifetimes in the test stress are respectively extrapolated in the different failure criteria.展开更多
A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the...A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the power supply and temperature, but also compensates deviations caused by the increase in input power. The bias circuit is a current-mirror configuration, and the feedback circuit helps to maintain bias voltage at a constant level. The gain of the feedback circuit is improved by the addition of a non-inverting amplifier within the feedback circuit. A shunt capacitor at the base node of the active bias transistor enhances the linearity of the PA. The chip is fabricated in an InGaP/GaAs heterojunction bipolar transistor (HBT) process. Measured results exhibit a 26. 6-dBm output compression point, 33.6% power-added efficiency (PAE) and - 40.2 dBc adjacent channel power ratio (ACPR) for wide-band code division multiple access (W-CDMA) applications.展开更多
With the large-signal model extracted from the InGaP/GaAs HBT with three fingers,a three-stage,class AB power amplifier at ISM band is designed.Through the optimization of the traditional bias network,the gain compres...With the large-signal model extracted from the InGaP/GaAs HBT with three fingers,a three-stage,class AB power amplifier at ISM band is designed.Through the optimization of the traditional bias network,the gain compression at the low input power level is eliminated successfully.At 3.5V of supply voltage of the power amplifier after optimization exhibits 30dBm of maximum linear output power,43.4% of power added efficiency 109.7mA of a quite low quiescent bias current ,29.1dB of the corresponding gain,and -100dBc of the adjacent channel power rejection (ACPR) at the output power of 30dBm.展开更多
Due to the backscattered parasitic current from the barriers,the current gain of the widely used amplifier is far from ideal.In this work,we demonstrate a vertical Au/Al2O3/BP/MoS2 tunneling hot-electron transfer ampl...Due to the backscattered parasitic current from the barriers,the current gain of the widely used amplifier is far from ideal.In this work,we demonstrate a vertical Au/Al2O3/BP/MoS2 tunneling hot-electron transfer amplifier with a hot-electron emitter-base junction and a p-n junction as the base-collector barrier.Fairly monoenergetic electrons traverse through the ultrathin Al2O3 dielectric via tunneling,which are accelerated and shifted to the collector region.The devices exhibit a high current on-off ratio of>105 and a high current density(JC)of∼1,000 A/cm2 at the same time.Notably,this work demonstrates a common-emitter current gain(β)value of 1,384 with a nanowatt power consumption at room temperature,which is a record high value among the all 2D based hot-electron transistors.Furthermore,the temperature dependent performance is investigated,and theβvalue of 1,613 is obtained at 150 K.Therefore,this work presents the potential of 2D based transistors for high-performance applications.展开更多
文摘研究了一种双极性增益Boost变换器,它不仅具有传统Boost变换器的升压特性,而且具有双极性增益特性,即对于正、负输入电压,均能得到正极性的直流输出电压。因此,该双极性增益Boost变换器可直接用于功率因数校正变换器。本文分析了该双极性增益Boost变换器工作于电感电流连续模式(Continuous Current Mode,CCM)时的工作模态,分析了正、负输入电压情况下,该双极性增益Boost变换器的直流稳态特性,分析结果表明该双极性增益Boost变换器具有与传统Boost变换器相同的升压特性。最后,通过实验验证了理论分析的正确性。
基金Supported by National Natural Science Foundation of China
文摘A unified model of low temperature current gain of polysilicon emitter bipolar transistors based on effective recombination method is presented, incorporating band-gap narrowing, carrier freezing-out, tunneling of holes through polysilicon/silicon interface oxide layer and reduced mobility mechanism in polysilicon. The modeling results based on this model are in good agreement with experimental data.
文摘Considering the impacts of ideal factor n, VBE and band gap changes with the temperature on current gain, the current gain expression has been corrected to make the results closer to the actual test. Besides, the accelerating lifetime study method in the constant temperature-humidity stress is used to estimate the reliability of the same batch transistors. Applying the revised findings from the expression, the current gains before and after the test are compared and analyzed, and, according to the degradation data of the current gain, the transistor lifetimes in the test stress are respectively extrapolated in the different failure criteria.
基金The National High Technology Research and Development Program of China(863 Program)(No.2009AA01Z260)
文摘A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the power supply and temperature, but also compensates deviations caused by the increase in input power. The bias circuit is a current-mirror configuration, and the feedback circuit helps to maintain bias voltage at a constant level. The gain of the feedback circuit is improved by the addition of a non-inverting amplifier within the feedback circuit. A shunt capacitor at the base node of the active bias transistor enhances the linearity of the PA. The chip is fabricated in an InGaP/GaAs heterojunction bipolar transistor (HBT) process. Measured results exhibit a 26. 6-dBm output compression point, 33.6% power-added efficiency (PAE) and - 40.2 dBc adjacent channel power ratio (ACPR) for wide-band code division multiple access (W-CDMA) applications.
文摘With the large-signal model extracted from the InGaP/GaAs HBT with three fingers,a three-stage,class AB power amplifier at ISM band is designed.Through the optimization of the traditional bias network,the gain compression at the low input power level is eliminated successfully.At 3.5V of supply voltage of the power amplifier after optimization exhibits 30dBm of maximum linear output power,43.4% of power added efficiency 109.7mA of a quite low quiescent bias current ,29.1dB of the corresponding gain,and -100dBc of the adjacent channel power rejection (ACPR) at the output power of 30dBm.
基金This work was supported by the National Key Research and Development Program of Ministry of Science and Technology(Nos.2018YFA0703704 and 2018YFB0406603)the National Natural Science Foundation of China(Nos.61851403,51872084,61704052,61811540408,51872084,and 61704051)as well as the Natural Science Foundation of Hunan Province(Nos.2017RS3021 and 2017JJ3033).
文摘Due to the backscattered parasitic current from the barriers,the current gain of the widely used amplifier is far from ideal.In this work,we demonstrate a vertical Au/Al2O3/BP/MoS2 tunneling hot-electron transfer amplifier with a hot-electron emitter-base junction and a p-n junction as the base-collector barrier.Fairly monoenergetic electrons traverse through the ultrathin Al2O3 dielectric via tunneling,which are accelerated and shifted to the collector region.The devices exhibit a high current on-off ratio of>105 and a high current density(JC)of∼1,000 A/cm2 at the same time.Notably,this work demonstrates a common-emitter current gain(β)value of 1,384 with a nanowatt power consumption at room temperature,which is a record high value among the all 2D based hot-electron transistors.Furthermore,the temperature dependent performance is investigated,and theβvalue of 1,613 is obtained at 150 K.Therefore,this work presents the potential of 2D based transistors for high-performance applications.