Micron-size superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (PSt-DVB-GMA) spheres were prepared via a modified suspension copolymerization method. Oleic acid coated magnetite (Fe3O4 nanoparticles ...Micron-size superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (PSt-DVB-GMA) spheres were prepared via a modified suspension copolymerization method. Oleic acid coated magnetite (Fe3O4 nanoparticles made by co-precipitation were first mixed with monomers of St, DVB, GMA, and benzoyl peroxide (BPO) to form oil in water suspension with the presence of poly(viny) pyrrolidone) (PVP-K30) as a stabilizer. Then the temperature of mixture was increased at a controlled rate to obtain small and relatively uniform droplets. Finally, the copolymerization reaction was initiated by the decomposition of BPO. The morphology and properties of magnetic PSt-DVB-GMA microspheres were examined by SEM, TEM, VSM, XRD and FT-IR. The magnetic microspheres obtained have very small size (about 4-7μm) in diameter with narrow size distribution and super-paramagnetic characteristics. Powder X-ray diffraction measurements show the inverse cubic spinel structure for the magnetite dispersed in polymer microspheres. FT-IR spectroscopy indicates extensive oxirane groups existed on the surface of magnetic PSt-DVB-GMA microspheres.展开更多
The foam fractionation of nisin from its fermentation broth was studied.Two types of devices consisting of a rubber piston and a foam riser were developed to enhance foam drainage.The separation performance of these t...The foam fractionation of nisin from its fermentation broth was studied.Two types of devices consisting of a rubber piston and a foam riser were developed to enhance foam drainage.The separation performance of these two devices was investigated.Experimental results indicated that the second device could significantly reduce the liquid fraction of the foam leaving the column,εout,leading to a higher enrichment of the out-flow stream.As its mounting height increased from 0 to 15 cm,εout declined from 7.07‰ to 6.13 ‰ and the maximum nisin activity in the foamate could reach 39.6 IU/μL.The slight increase in nisin inactivation rate indicated the applicability of this method in the recovery and concentration of proteins.Finally,the mechanism of the process was primarily explained by invoking recent work on pneumatic foams.This research provides a basis for the design of multistage draining foam fractionator which could potentially be an effective separation equipment.展开更多
This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems...This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KHEPO4-KEHPO4, in which elastase is mainly partitioned into the PEG-rich phase, while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KHEPO4-KEHPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2000 and 11.7% (w/w) KHEPO4-KEHPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction.展开更多
基金Supported by the High-Technology Research and Development Program of China(No.2002AA302211)and the National Natural science Foundation of China(No.20206032)
文摘Micron-size superparamagnetic poly(styrene-divinylbenzene-glycidyl methacrylate) (PSt-DVB-GMA) spheres were prepared via a modified suspension copolymerization method. Oleic acid coated magnetite (Fe3O4 nanoparticles made by co-precipitation were first mixed with monomers of St, DVB, GMA, and benzoyl peroxide (BPO) to form oil in water suspension with the presence of poly(viny) pyrrolidone) (PVP-K30) as a stabilizer. Then the temperature of mixture was increased at a controlled rate to obtain small and relatively uniform droplets. Finally, the copolymerization reaction was initiated by the decomposition of BPO. The morphology and properties of magnetic PSt-DVB-GMA microspheres were examined by SEM, TEM, VSM, XRD and FT-IR. The magnetic microspheres obtained have very small size (about 4-7μm) in diameter with narrow size distribution and super-paramagnetic characteristics. Powder X-ray diffraction measurements show the inverse cubic spinel structure for the magnetite dispersed in polymer microspheres. FT-IR spectroscopy indicates extensive oxirane groups existed on the surface of magnetic PSt-DVB-GMA microspheres.
基金supported by Natural Science Foundation of Tianjin (Grant No. 08JCZDJC25200)Natural Science Research Program of Hebei Province (Grant No. Z2008310)
文摘The foam fractionation of nisin from its fermentation broth was studied.Two types of devices consisting of a rubber piston and a foam riser were developed to enhance foam drainage.The separation performance of these two devices was investigated.Experimental results indicated that the second device could significantly reduce the liquid fraction of the foam leaving the column,εout,leading to a higher enrichment of the out-flow stream.As its mounting height increased from 0 to 15 cm,εout declined from 7.07‰ to 6.13 ‰ and the maximum nisin activity in the foamate could reach 39.6 IU/μL.The slight increase in nisin inactivation rate indicated the applicability of this method in the recovery and concentration of proteins.Finally,the mechanism of the process was primarily explained by invoking recent work on pneumatic foams.This research provides a basis for the design of multistage draining foam fractionator which could potentially be an effective separation equipment.
文摘针对Oligo(d T)亲和层析介质的吸附性能,以poly(A)为模型分子,考察了4种Oligo(d T)亲和层析介质的静态吸附平衡、吸附动力学和动态结合载量(DBC),探讨了载量影响相关机制。结果表明,4种介质的合适吸附条件均为0.6 mol·L-1Na Cl、p H=6~7;Monomix d T20静态吸附容量最大,且poly(A)能扩散至介质微球深层孔内,而Poros Oligo(d T)25、Praesto Jetted (d T)25和Nano Gel d T20等3种介质中poly(A)均主要为表层吸附、静态吸附容量稍低;对于DBC,Nano Gel d T20和Monomix d T20的10%穿透的DBC较高,而Poros Oligo (d T)25和Praesto Jetted (d T)25相对略低。经分析,影响载量的主要因素包含基质种类、微球孔径、配基密度、间隔臂和配基长度等。对于基质种类,聚苯乙烯基质可能孔道结构较为特别。对于微球孔径,应针对不同大小的m RNA分子定制不同孔径的微球,以平衡传质阻力与可及吸附表面积之间的矛盾,从而增大DBC。
基金Project (No. 20276064) supported by the National Natural ScienceFoundation of China
文摘This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KHEPO4-KEHPO4, in which elastase is mainly partitioned into the PEG-rich phase, while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KHEPO4-KEHPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2000 and 11.7% (w/w) KHEPO4-KEHPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction.