Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal mu...Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal multiple wavelets by refinable function vectors which are the solutions of vector refinement equations of the form $$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^s } {a(\alpha )\varphi (Mx - \alpha ), x \in \mathbb{R}^s } ,$$ where the vector of functions ? = (? 1, …, ? r)T is in $(L_2 (\mathbb{R}^s ))^r ,a = :(a(\alpha ))_{\alpha \in \mathbb{Z}^s } $ is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M ?n = 0. Our characterizations are in the general setting and the main results of this paper are the real extensions of some known results.展开更多
Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to th...Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.展开更多
This paper utilizes the mathematical concept of approximation within an ellipsoid from a single viewpoint to present the spatial mass distribution function of the Earth's interior and its internal potential.The pr...This paper utilizes the mathematical concept of approximation within an ellipsoid from a single viewpoint to present the spatial mass distribution function of the Earth's interior and its internal potential.The primary focus lies in constructing the volume distribution of masses in the planet's interior, with the expansion coefficients being linear combinations of the Stokes constants. Several possible approaches are suggested for determining accurately these coefficients employing three-dimensional(biorthogonal)polynomials. By expressing the mass distribution function of the Earth's interior and its internal potential as a series, an algorithm is introduced for the calculation of gravitational energy. It allows us to estimate fluctuations in gravitational energy. The implementation of this algorithm offers the means of establishing the extent to which the Earth deviates from a state of hydrostatic equilibrium as a celestial body.Due to the aforementioned method, calculations have been conducted to validate its effectiveness and reliability. This example is given as an illustration of a given method for studying the internal structure of planets.展开更多
In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(? s ). Suppose ψ = (ψ1,..., ψ r ) T and $ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $ ...In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(? s ). Suppose ψ = (ψ1,..., ψ r ) T and $ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $ are two compactly supported vectors of functions in the Sobolev space (H μ(? s )) r for some μ > 0. We provide a characterization for the sequences {ψ jk l : l = 1,...,r, j ε ?, k ε ? s } and $ \tilde \psi _{jk}^\ell :\ell = 1,...,r,j \in \mathbb{Z},k \in \mathbb{Z}^s $ to form two Riesz sequences for L 2(? s ), where ψ jk l = m j/2ψ l (M j ·?k) and $ \tilde \psi _{jk}^\ell = m^{{j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0em} 2}} \tilde \psi ^\ell (M^j \cdot - k) $ , M is an s × s integer matrix such that lim n→∞ M ?n = 0 and m = |detM|. Furthermore, let ? = (?1,...,? r ) T and $ \tilde \phi = (\tilde \phi ^1 ,...,\tilde \phi ^r )^T $ be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, $ \tilde a $ and M, where a and $ \tilde a $ are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1,...,ψνr ) T and $ \tilde \psi ^\nu = (\tilde \psi ^{\nu 1} ,...,\tilde \psi ^{\nu r} )^T $ , ν = 1,..., m ? 1 such that two sequences {ψ jk νl : ν = 1,..., m ? 1, l = 1,...,r, j ε ?, k ε ? s } and { $ \tilde \psi _{jk}^\nu $ : ν=1,...,m?1,?=1,...,r, j ∈ ?, k ∈ ? s } form two Riesz multiwavelet bases for L 2(? s ). The bracket product [f, g] of two vectors of functions f, g in (L 2(? s )) r is an indispensable tool for our characterization.展开更多
A separable Hamiltonian system of Mindlin plate bending problems is obtained. Using the equivalence between the differen form and integral form of the separable Hamiltonian system, the biorthogonal relationships of th...A separable Hamiltonian system of Mindlin plate bending problems is obtained. Using the equivalence between the differen form and integral form of the separable Hamiltonian system, the biorthogonal relationships of the eigenfunctions are presen! Based on the biorthogonal relationships, a novel complete biorthogonal expansion of the Mindlin plate bending problems x~ two opposite sides simply supported is proposed through the products of operator matrices. The exact solutions to deflections bending moments for the Mindlin plate with fully simply supported sides are obtained. A numerical example is illustrated to ve~ the accuracy and validity of the expansion method.展开更多
This paper is concerned with seeking the general solutions of matrix equation M(ξ)M* (ξ) = Is for the construction of multiple channel biorthogonal wavelets, provided that some special solution of its is known.
Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function...Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function can be not only Fourier or Legendre series, but also can be any one of all orthogonal function systems. These kinds of biorthogonal function sets are used as scramble signals to construct biorthogonal scramble modulation (BOSM) wireless transmission systems. In a BOSM system, the transmitted signal has significant security performance. Several different BOSM and orthogonal systems are compared on aspects of BER performance and spectrum efficiency, simulation results show that the BOSM systems based on Chebyshev polynomial and Legendre polynomial are better than BOSM system based on Fourier series, also better than orthogonal MCM and OFDM systems.展开更多
Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied....Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied. Comparing with the traditional algorithm, it can better improve the compression rate. CDF (2, n) biorthogonal wavelet family can lead to better compression ratio than other CDF family, SWE and CRF, which is owe to its capability in can- celing data redundancies and focusing data characteristics. CDF (2, n) family is suitable as the wavelet function of the lossless compression seismic data.展开更多
The characteristics of suspended sediment image can be reflected by the coefficients of biorthogonal wavelet transform of CDF(2,2). Based on the power distribution in different scales, an adaptive algorithm is propo...The characteristics of suspended sediment image can be reflected by the coefficients of biorthogonal wavelet transform of CDF(2,2). Based on the power distribution in different scales, an adaptive algorithm is proposed in this paper, whereby the coefficients are adjusted non-linearly. The particle information can be well retained while the useless background is removed. In this way, satisfactory binary image can be obtained for further analysis of the sediment particle.展开更多
We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian tra...We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is investigated by the second derivative of the ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.展开更多
基金This work was partially supported by the National Natural Science Foundation of China(Grant Nos.10071071 and 10471123)the Mathematical Tianyuan Foundation of the National Natural Science Foundation of China NSF(Grant No.10526036)China Postdoctoral Science Foundation(Grant No.20060391063)
文摘Biorthogonal multiple wavelets are generated from refinable function vectors by using the multiresolution analysis. In this paper we provide a general method for the construction of compactly supported biorthogonal multiple wavelets by refinable function vectors which are the solutions of vector refinement equations of the form $$\varphi (x) = \sum\limits_{\alpha \in \mathbb{Z}^s } {a(\alpha )\varphi (Mx - \alpha ), x \in \mathbb{R}^s } ,$$ where the vector of functions ? = (? 1, …, ? r)T is in $(L_2 (\mathbb{R}^s ))^r ,a = :(a(\alpha ))_{\alpha \in \mathbb{Z}^s } $ is a finitely supported sequence of r × r matrices called the refinement mask, and M is an s × s integer matrix such that lim n→∞ M ?n = 0. Our characterizations are in the general setting and the main results of this paper are the real extensions of some known results.
基金Projects(51678071,51278071)supported by the National Natural Science Foundation of ChinaProjects(14KC06,CX2015BS02)supported by Changsha University of Science&Technology,China
文摘Due to the disturbances arising from the coherence of reflected waves and from echo noise,problems such as limitations,instability and poor accuracy exist with the current quantitative analysis methods.According to the intrinsic features of GPR signals and wavelet time–frequency analysis,an optimal wavelet basis named GPR3.3 wavelet is constructed via an improved biorthogonal wavelet construction method to quantitatively analyse the GPR signal.A new quantitative analysis method based on the biorthogonal wavelet(the QAGBW method)is proposed and applied in the analysis of analogue and measured signals.The results show that compared with the Bayesian frequency-domain blind deconvolution and with existing wavelet bases,the QAGBW method based on optimal wavelet can limit the disturbance from factors such as the coherence of reflected waves and echo noise,improve the quantitative analytical precision of the GPR signal,and match the minimum thickness for quantitative analysis with the vertical resolution of GPR detection.
文摘This paper utilizes the mathematical concept of approximation within an ellipsoid from a single viewpoint to present the spatial mass distribution function of the Earth's interior and its internal potential.The primary focus lies in constructing the volume distribution of masses in the planet's interior, with the expansion coefficients being linear combinations of the Stokes constants. Several possible approaches are suggested for determining accurately these coefficients employing three-dimensional(biorthogonal)polynomials. By expressing the mass distribution function of the Earth's interior and its internal potential as a series, an algorithm is introduced for the calculation of gravitational energy. It allows us to estimate fluctuations in gravitational energy. The implementation of this algorithm offers the means of establishing the extent to which the Earth deviates from a state of hydrostatic equilibrium as a celestial body.Due to the aforementioned method, calculations have been conducted to validate its effectiveness and reliability. This example is given as an illustration of a given method for studying the internal structure of planets.
基金supported by National Natural Science Foundation of China (Grant Nos. 10771190, 10471123)
文摘In this paper, we investigate compactly supported Riesz multiwavelet sequences and Riesz multiwavelet bases for L 2(? s ). Suppose ψ = (ψ1,..., ψ r ) T and $ \tilde \psi = (\tilde \psi ^1 ,...,\tilde \psi ^r )^T $ are two compactly supported vectors of functions in the Sobolev space (H μ(? s )) r for some μ > 0. We provide a characterization for the sequences {ψ jk l : l = 1,...,r, j ε ?, k ε ? s } and $ \tilde \psi _{jk}^\ell :\ell = 1,...,r,j \in \mathbb{Z},k \in \mathbb{Z}^s $ to form two Riesz sequences for L 2(? s ), where ψ jk l = m j/2ψ l (M j ·?k) and $ \tilde \psi _{jk}^\ell = m^{{j \mathord{\left/ {\vphantom {j 2}} \right. \kern-0em} 2}} \tilde \psi ^\ell (M^j \cdot - k) $ , M is an s × s integer matrix such that lim n→∞ M ?n = 0 and m = |detM|. Furthermore, let ? = (?1,...,? r ) T and $ \tilde \phi = (\tilde \phi ^1 ,...,\tilde \phi ^r )^T $ be a pair of compactly supported biorthogonal refinable vectors of functions associated with the refinement masks a, $ \tilde a $ and M, where a and $ \tilde a $ are finitely supported sequences of r × r matrices. We obtain a general principle for characterizing vectors of functions ψν = (ψν1,...,ψνr ) T and $ \tilde \psi ^\nu = (\tilde \psi ^{\nu 1} ,...,\tilde \psi ^{\nu r} )^T $ , ν = 1,..., m ? 1 such that two sequences {ψ jk νl : ν = 1,..., m ? 1, l = 1,...,r, j ε ?, k ε ? s } and { $ \tilde \psi _{jk}^\nu $ : ν=1,...,m?1,?=1,...,r, j ∈ ?, k ∈ ? s } form two Riesz multiwavelet bases for L 2(? s ). The bracket product [f, g] of two vectors of functions f, g in (L 2(? s )) r is an indispensable tool for our characterization.
基金supported by the National Natural Science Foundation of China (Grant No. 10962004)the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2012MS0105)
文摘A separable Hamiltonian system of Mindlin plate bending problems is obtained. Using the equivalence between the differen form and integral form of the separable Hamiltonian system, the biorthogonal relationships of the eigenfunctions are presen! Based on the biorthogonal relationships, a novel complete biorthogonal expansion of the Mindlin plate bending problems x~ two opposite sides simply supported is proposed through the products of operator matrices. The exact solutions to deflections bending moments for the Mindlin plate with fully simply supported sides are obtained. A numerical example is illustrated to ve~ the accuracy and validity of the expansion method.
基金supported in part Professor Yuesheng Xu under the program of"One Hundred Outstanding Young Chinese Scientists" of the Chinese Academy of Sciencesthe Graduate Innovation Foundation of the Chinese Academy of Sciences
文摘This paper is concerned with seeking the general solutions of matrix equation M(ξ)M* (ξ) = Is for the construction of multiple channel biorthogonal wavelets, provided that some special solution of its is known.
文摘Applying the theorems of Mobius inverse and Dirichlet inverse, a general algorithm to obtain biorthogonal functions based on generalized Fourier series analysis is introduced. In the algorithm, the orthogonal function can be not only Fourier or Legendre series, but also can be any one of all orthogonal function systems. These kinds of biorthogonal function sets are used as scramble signals to construct biorthogonal scramble modulation (BOSM) wireless transmission systems. In a BOSM system, the transmitted signal has significant security performance. Several different BOSM and orthogonal systems are compared on aspects of BER performance and spectrum efficiency, simulation results show that the BOSM systems based on Chebyshev polynomial and Legendre polynomial are better than BOSM system based on Fourier series, also better than orthogonal MCM and OFDM systems.
文摘Due to the particularity of the seismic data, they must be treated by lossless compression algorithm in some cases. In the paper, based on the integer wavelet transform, the lossless compression algorithm is studied. Comparing with the traditional algorithm, it can better improve the compression rate. CDF (2, n) biorthogonal wavelet family can lead to better compression ratio than other CDF family, SWE and CRF, which is owe to its capability in can- celing data redundancies and focusing data characteristics. CDF (2, n) family is suitable as the wavelet function of the lossless compression seismic data.
基金This project is supported by the National Natural Science Foundation of China(Grant Nos.50379001 and 10332050)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0420)863 Program(No.2002AA639260).
文摘The characteristics of suspended sediment image can be reflected by the coefficients of biorthogonal wavelet transform of CDF(2,2). Based on the power distribution in different scales, an adaptive algorithm is proposed in this paper, whereby the coefficients are adjusted non-linearly. The particle information can be well retained while the useless background is removed. In this way, satisfactory binary image can be obtained for further analysis of the sediment particle.
基金G.S.is appreciative of support from the NSFC under the Grant Nos.11704186 and 11874220S.P.K is appreciative of support by the National Natural Science Foundation of China under Grant Nos.11674026,11974053,and 12174030.
文摘We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is investigated by the second derivative of the ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.