The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and ...The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and the effects of these designs on tool force and power requirements were examined experimentally.Geometrical structures of the cuticle surfaces of dung beetle (Copris ochus Motschulsky) were examined by stereoscopy.The structures of the cuticle surfaces and Ultra High Mo- lecular Weight Polyethylene (UHMWPE) material were modeled on surface of tine furrow opener as biomimetic designs.Seven furrow openers were analyzed in ANSYS program (a FEM simulation software).The biomimetic furrow opener surfaces with UHMWPE structures were found to have lower equivalent pressure and pressure in the direction of motion as compared to the conventional surface and to the biomimetic surfaces with textured steel-35 structures.It was found that the tool force and power were increased with the cutting depth and operating speed and the biomimetic furrow opener with UHMWPE tubular section ridges showed the lowest resistance and power requirement against soil..展开更多
基金supported by the National Natural Science Foundation of China (Grant no. 50675087 and Grant no. 50635030)the National Hi-tech Project (863 Project) (Grant no. SQ2008AA04ZX1478650)+3 种基金the Key Project of Science and Technology Research of Ministry of Education of China (Grant no. 106061)the National Key Technologies R&D Program (Grant no. 2006BAD11A08)the National Science Fund for Distinguished Young Scholars of China (Grant no. 50025516)the "985 Project" of Jilin University.
文摘The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and the effects of these designs on tool force and power requirements were examined experimentally.Geometrical structures of the cuticle surfaces of dung beetle (Copris ochus Motschulsky) were examined by stereoscopy.The structures of the cuticle surfaces and Ultra High Mo- lecular Weight Polyethylene (UHMWPE) material were modeled on surface of tine furrow opener as biomimetic designs.Seven furrow openers were analyzed in ANSYS program (a FEM simulation software).The biomimetic furrow opener surfaces with UHMWPE structures were found to have lower equivalent pressure and pressure in the direction of motion as compared to the conventional surface and to the biomimetic surfaces with textured steel-35 structures.It was found that the tool force and power were increased with the cutting depth and operating speed and the biomimetic furrow opener with UHMWPE tubular section ridges showed the lowest resistance and power requirement against soil..