期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Light Trapping Effect in Wing Scales of Butterfly Papilio peranthus and Its Simulations 被引量:7
1
作者 Zhiwu Han Shichao Niu Lufeng Zhang Zhenning Liu Luquan Ren 《Journal of Bionic Engineering》 SCIE EI CSCD 2013年第2期162-169,共8页
Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in... Broadband light trapping effect and arrays of sub-wavelength textured structures based on the butterfly wing scales are applicable to solar cells and stealth technologies. In this paper, the fine optical structures in wing scales of butterfly Papilio peranthus, exhibiting efficient light trapping effect, were carefully examined. First, the reflectivity was measured by reflectance spectrum. Field Emission Scanning Electronic Microscope (FESEM) and Transmission Electron Microscope (TEM) were used to observe the coupling morphologies and structures of the scales. Then, the optimized 3D model of the coupling structure was created combining Scanning Electron Microscope (SEM) and TEM data. Afterwards, the mechanism of the light trapping effect of these structures was analyzed by simulation and theoretical calculations. A multilayer nano-structure of chitin and air was found. These structures are effective in increasing optical path, resulting in that most of the incident light can be trapped and adsorbed within the structure at last. Furthermore, the simulated optical results are consistent with the experimental and calculated ones. This result reliably confirms that these structures induce an efficient light trapping effect. This work can be used as a reference for in-depth study on the fabrication of highly efficient bionic optical devices, such as solar cells, photo detectors, high-contrast, antiglare, and so forth. 展开更多
关键词 butterfly wing scale light trapping structures biomimetic functional surfaces
原文传递
基于昆虫高升力机理的仿生蝴蝶机构设计 被引量:3
2
作者 陈前川 万里鹰 章建群 《南昌航空大学学报(自然科学版)》 CAS 2018年第3期14-18,49,共6页
为了设计一种实用的仿生蝴蝶飞行器,本研究分析了仿生蝴蝶的高升力机理,认为大涡环的形成、前缘涡形成的位置和飞翼下拍过程中的高升力是3个关键因素,并基于分析结果设计了仿生蝴蝶的机构。研究结果表明:仿生蝴蝶具有蝴蝶的形状和巧妙... 为了设计一种实用的仿生蝴蝶飞行器,本研究分析了仿生蝴蝶的高升力机理,认为大涡环的形成、前缘涡形成的位置和飞翼下拍过程中的高升力是3个关键因素,并基于分析结果设计了仿生蝴蝶的机构。研究结果表明:仿生蝴蝶具有蝴蝶的形状和巧妙的可移动后翼,通过蝴蝶翅膀形状结构的仿生和电机转速的变化产生大涡环保证仿生蝴蝶飞行时的大升力;通过仿生蝴蝶的机械结构设计,使仿生蝴蝶翅膀在下拍过程中获得更大的升力;同时仿生蝴蝶质心可调,前缘涡有利于增大升力,从而实现垂直升降。 展开更多
关键词 仿生蝴蝶 扑翼飞行器 高升力机理 涡流
下载PDF
仿生纳米减反结构的制备 被引量:2
3
作者 李腾 丁剑 范同祥 《材料导报》 EI CAS CSCD 北大核心 2012年第15期71-78,共8页
综述了有序纳米阵列、无序纳米结构、分级纳米结构和蝶翅鳞片结构4类结构的减反机理、制备方法以及实现的性能,并提出计算模拟优化与制备工艺改进的结合是进一步研究的思路。
关键词 仿生 减反 复眼 分级 蝶翅
下载PDF
仿Morpho蝶翅微纳结构制备及其光学特性 被引量:1
4
作者 廖广兰 江婷 +1 位作者 江轩 史铁林 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第12期21-25,共5页
以Morpho Rhetenor蝴蝶鳞翅为研究对象,采用光学显微镜和电子显微镜对其蝶翅表面结构进行分析,提出一种易于操作、成本低的仿蝶翅微纳结构制备方法.以Morpho Rhetenor鳞片为生物模板,采用磁控溅射技术,借助烧结成型工艺,制备出仿蝶翅结... 以Morpho Rhetenor蝴蝶鳞翅为研究对象,采用光学显微镜和电子显微镜对其蝶翅表面结构进行分析,提出一种易于操作、成本低的仿蝶翅微纳结构制备方法.以Morpho Rhetenor鳞片为生物模板,采用磁控溅射技术,借助烧结成型工艺,制备出仿蝶翅结构的Al2O3和ZnO反结构产物.再采用Rsoft软件对蝶翅结构及蝶翅样本的Al2O3和ZnO遗态结构进行光学仿真模拟,与实测的蝶翅样本反射谱进行比较.研究表明:仿真结果与所制备出的仿蝶翅微纳结构颜色及用低温原子层沉积工艺、溶胶凝胶等方法得到的结果较为近似,从而印证了该工艺的可行性,也为仿生微纳结构的制备及其应用提供了一条具有参考性的途径. 展开更多
关键词 仿生微纳制造 蝶翅 磁控溅射技术 Rsoft仿真 光学特性
原文传递
Super-hydrophobic characteristics of butterfly wing surface 被引量:24
5
作者 CONG Qian, CHEN Guang-hua, FANGYan , REN Lu-quan Key Laboratory for Terrain-Machine Bionics Engineering (Ministry of Education, China), Jilin University, Changchun, 130022, P. R. China 1 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第4期249-255,共7页
Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super... Many biological surface are hydrophobic because of their complicated composition and surface microstructure. Eleven species (four families) of butterflies were selected to study their micro-, nano-structure and super-hydrophobic characteristic by means of Confocal Light Microscopy, Scanning Electron Microscopy and Contact Angle Measurement. The contact an- gles of water droplets on the butterfly wing surface were consistently measured to be about 150 ? and 100 ? with and without the squamas, respectively. The dust on the surface can be easily cleaned by moving spherical droplets when the inclining angle is larger than 3 ?. It can be concluded that the butterfly wing surface possess a super-hydrophobic, water-repellent, self-cleaning, or “Lotus-effect”characteristic. The contact angle measurement of water droplets on the wing surface with and without the squamas showed that the water-repellent characteristic is a consequence of the microstructure of the squamas. Each water droplet (diameter 2 mm) can cover about 700 squamas with a size of 40 m×80 m of each squama. The regular riblets with a width of 1000 nm to 1500 nm are clearly observed on each single squama. Such nanostructure should play a very important role in their super-hydrophobic and self-cleaning characteristic. 展开更多
关键词 BIONICS biomimetics butterfly SUPER-HYDROPHOBIC NANOSTRUCTURE self-cleaning 1
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部