On-line monitoring of self-flocculating yeast cell p articles (SFYCPs) that were characterized by their weak strength, irregular morp hology, special size distribution, and so on, was realized by using the Focused Bea...On-line monitoring of self-flocculating yeast cell p articles (SFYCPs) that were characterized by their weak strength, irregular morp hology, special size distribution, and so on, was realized by using the Focused Beam Reflectance Measurement (FBRM) technique.The experimental results showed go od correlation between the total counts of the FBRM chord length and the biomass concentration of SFYCPs, which could be used to measure the biomass concentrati on for the SFYCP system quantitatively.Furthermore, the mode of FBRM chord lengt h distribution was linearly correlated to both the mean (R2=0.986) and th e 95th percentile (R2=0.988)of the length-weighted chord length distribu tion, which could be used to evaluate SFYCP size distribution effectively.The CO 2 bubbles produced during cell growth/fermentation were observed and proved to create disturbance on on-line measurement of the SFYCP system.This disturbance could be excluded by estimating SFYCP size distribution based on the mode of FB RM chord length distribution.展开更多
The present study addresses the influence of blending of waste plastics(i.e.,polystyrene,PS and waste nitrile gloves,WNG)with mahua seeds(MH)for co-pyrolytic liquid yield and its fuel properties.Various blends of wast...The present study addresses the influence of blending of waste plastics(i.e.,polystyrene,PS and waste nitrile gloves,WNG)with mahua seeds(MH)for co-pyrolytic liquid yield and its fuel properties.Various blends of waste plastics were mixed with biomass(10,20 and 30 wt%)and pyrolyzed in a semi-batch reactor at an optimized environment(550℃ temperature,80℃ min^(-1) heating rate,and 100 mL min^(-1) N_(2) flow rate).Physicochemical results displayed its ability to yield renewable fuel and valuable chemicals.Co-pyrolysis outcomes showed that blending of waste plastics at 20 wt%,yielded maximum liquid(44.18±1.2 wt%and 45.89±1.4 wt%for MH+WNG and MH+PS respectively)which was higher than thermal pyrolysis of individual MH(39.26±1.2 wt%).Further,characterization results revealed a substantial reduction in viscosity,oxygen content,moisture,and a positive increment in gross heating value,carbon content and acidity.FTIR examination exposed the attendance of mainly aromatics,acids,phenols,water,esters and ethers.Further,NMR analysis of pyrolytic oil confirmed an increase in aromaticity by blending of waste plastics(20 wt%)while there was a reduction in paraffinic compounds.GC-MS investigation revealed substantial improvement in hydrocarbons and minimization in the oxygen-rich products by blending of waste plastics at 20 wt%.展开更多
The main source of energy for most African families remains firewood. The exploitation of this resource is the main cause of accelerated environmental degradation with its consequences which are climate change and soi...The main source of energy for most African families remains firewood. The exploitation of this resource is the main cause of accelerated environmental degradation with its consequences which are climate change and soil impoverishment. However, agricultural residues are often available and even abandoned in fields after harvest. In this regard, we have characterized three biomass with no economic value in order to use them for the production of biochar to improve soil quality while providing the energy necessary for household cooking. Our research was based on the following biomasses: cotton stalks, maize rachis and rice husks. The study made it possible to characterize the biomasses which could be used for combustion and/or pyrolysis. From the results obtained, we could observe a high ash content in the rice husk (24.21%) against 2.41% for cotton stalks and 2.00% for maize rachis. These results influence the calorific value of the rice husk, thus allowing it to be used matter in pyrolysis and not in combustion. In addition, cotton stalks and corn rachis can be used both as fuel and as biomass to be pyrolyzed.展开更多
Green coal or bio-coal is coal produced with rich biodegradable materials, elaborated from agricultural and household residues with a high percentage of carbon. This green charcoal (fuel briquettes) is an alternative ...Green coal or bio-coal is coal produced with rich biodegradable materials, elaborated from agricultural and household residues with a high percentage of carbon. This green charcoal (fuel briquettes) is an alternative to charcoal. Well known for its contribution to greenhouse gas emissions, charcoal is one of the causes of tree felling. The valorization of waste by the manufacture of biofuels could be an alternative to the use of charcoal. The general objective of the present study is the valorization of nine biomasses from Togo as raw materials. Specifically, physico-chemical characteristics such as dehydration, acidity, and conductivity were determined. Information on the structure and composition of the biomass was found. These data on the nature of the biomass were found through the use of Fourier Transform Infrared (FTIR) and Thermogravimetry (TGA). The promising results inform on the nature of the analyzed samples and allow the selection of the best biomass which would give an important thermal conductivity for the manufacture of the briquettes, but also of the binders to be used according to the physico-chemical characteristics like the pH.展开更多
文摘On-line monitoring of self-flocculating yeast cell p articles (SFYCPs) that were characterized by their weak strength, irregular morp hology, special size distribution, and so on, was realized by using the Focused Beam Reflectance Measurement (FBRM) technique.The experimental results showed go od correlation between the total counts of the FBRM chord length and the biomass concentration of SFYCPs, which could be used to measure the biomass concentrati on for the SFYCP system quantitatively.Furthermore, the mode of FBRM chord lengt h distribution was linearly correlated to both the mean (R2=0.986) and th e 95th percentile (R2=0.988)of the length-weighted chord length distribu tion, which could be used to evaluate SFYCP size distribution effectively.The CO 2 bubbles produced during cell growth/fermentation were observed and proved to create disturbance on on-line measurement of the SFYCP system.This disturbance could be excluded by estimating SFYCP size distribution based on the mode of FB RM chord length distribution.
文摘The present study addresses the influence of blending of waste plastics(i.e.,polystyrene,PS and waste nitrile gloves,WNG)with mahua seeds(MH)for co-pyrolytic liquid yield and its fuel properties.Various blends of waste plastics were mixed with biomass(10,20 and 30 wt%)and pyrolyzed in a semi-batch reactor at an optimized environment(550℃ temperature,80℃ min^(-1) heating rate,and 100 mL min^(-1) N_(2) flow rate).Physicochemical results displayed its ability to yield renewable fuel and valuable chemicals.Co-pyrolysis outcomes showed that blending of waste plastics at 20 wt%,yielded maximum liquid(44.18±1.2 wt%and 45.89±1.4 wt%for MH+WNG and MH+PS respectively)which was higher than thermal pyrolysis of individual MH(39.26±1.2 wt%).Further,characterization results revealed a substantial reduction in viscosity,oxygen content,moisture,and a positive increment in gross heating value,carbon content and acidity.FTIR examination exposed the attendance of mainly aromatics,acids,phenols,water,esters and ethers.Further,NMR analysis of pyrolytic oil confirmed an increase in aromaticity by blending of waste plastics(20 wt%)while there was a reduction in paraffinic compounds.GC-MS investigation revealed substantial improvement in hydrocarbons and minimization in the oxygen-rich products by blending of waste plastics at 20 wt%.
文摘The main source of energy for most African families remains firewood. The exploitation of this resource is the main cause of accelerated environmental degradation with its consequences which are climate change and soil impoverishment. However, agricultural residues are often available and even abandoned in fields after harvest. In this regard, we have characterized three biomass with no economic value in order to use them for the production of biochar to improve soil quality while providing the energy necessary for household cooking. Our research was based on the following biomasses: cotton stalks, maize rachis and rice husks. The study made it possible to characterize the biomasses which could be used for combustion and/or pyrolysis. From the results obtained, we could observe a high ash content in the rice husk (24.21%) against 2.41% for cotton stalks and 2.00% for maize rachis. These results influence the calorific value of the rice husk, thus allowing it to be used matter in pyrolysis and not in combustion. In addition, cotton stalks and corn rachis can be used both as fuel and as biomass to be pyrolyzed.
文摘Green coal or bio-coal is coal produced with rich biodegradable materials, elaborated from agricultural and household residues with a high percentage of carbon. This green charcoal (fuel briquettes) is an alternative to charcoal. Well known for its contribution to greenhouse gas emissions, charcoal is one of the causes of tree felling. The valorization of waste by the manufacture of biofuels could be an alternative to the use of charcoal. The general objective of the present study is the valorization of nine biomasses from Togo as raw materials. Specifically, physico-chemical characteristics such as dehydration, acidity, and conductivity were determined. Information on the structure and composition of the biomass was found. These data on the nature of the biomass were found through the use of Fourier Transform Infrared (FTIR) and Thermogravimetry (TGA). The promising results inform on the nature of the analyzed samples and allow the selection of the best biomass which would give an important thermal conductivity for the manufacture of the briquettes, but also of the binders to be used according to the physico-chemical characteristics like the pH.