Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of appl...Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized water (DDW), BG, HP, BG before HP, BG after HP and BG during HP. Colorimetric and microhardness tests were performed before and after the treatment procedure. Representative specimens from each group were selected for morphology investigation after the final tests. A significant color change was observed in group HP, BG before HP, BG after HP and BG during HP. The microhardness loss was in the following order: group HP〉 BG before HP, BG after HP〉 BG during HP〉DDW, BG. The most obvious morphological alteration of was observed on enamel surfaces in group HP, and a slight morphological alteration was also detected in group BG before HP and BG after HP. Our findings suggest that the combination use of BG and HP could not impede the tooth whitening efficacy. Using BG during HP brought better protective effect than pre/post-bleaching use of BG, as it could more effectively reduce the mineral loss as well as retain the surface integrity of enamel. BG may serve as a promising biomimetic adjunct for bleaching therapy to prevent/restore the enamel damage induced by bleaching agents.展开更多
More and more studies have recognized that the nanosized pores of hydrogels are too small for cells to normally grow and newly formed tissue to infiltrate,which impedes tissue regeneration.Recently,hydrogels with macr...More and more studies have recognized that the nanosized pores of hydrogels are too small for cells to normally grow and newly formed tissue to infiltrate,which impedes tissue regeneration.Recently,hydrogels with macropores and/or controlled degradation attract more and more attention for solving this problem.Sodium alginate/Bioglass(SA/BG)hydrogel,which has been reported to be an injectable and bioactive hydrogel,is also limited to be used as tissue engineering scaffolds due to its nanosized pores.Therefore,in this study,degradation of SA/BG hydrogel was modulated by grafting deferoxamine(DFO)to SA.The functionalized grafted DFO-SA(G-DFO-SA)was used to form G-DFO-SA/BG injectable hydrogel.In vitro degradation experiments proved that,compared to SA/BG hydrogel,G-DFO-SA/BG hydrogel had a faster mass loss and structural disintegration.When the hydrogels were implanted subcutaneously,G-DFO-SA/BG hydrogel possessed a faster degradation and better tissue infiltration as compared to SA/BG hydrogel.In addition,in a rat full-thickness skin defect model,wound healing studies showed that,G-DFO-SA/BG hydrogel significantly accelerated wound healing process by inducing more blood vessels formation.Therefore,G-DFO-SA/BG hydrogel can promote tissue infiltration and stimulate angiogenesis formation,which suggesting a promising application potential in tissue regeneration.展开更多
Therapeutic options are quite limited in clinics for the successful repair of infected/degenerated tissues.Although the prevalent treatment is the complete removal of the whole infected tissue,this leads to a loss of ...Therapeutic options are quite limited in clinics for the successful repair of infected/degenerated tissues.Although the prevalent treatment is the complete removal of the whole infected tissue,this leads to a loss of tissue function and serious complications.Herein the dental pulp infection,as one of the most common dental problems,was selected as a clinically relevant case to regenerate using a multifunctional nanotherapeutic approach.For this,a mesoporous bioactive glass nano-delivery system incorporating silicate,calcium,and copper as well as loading epidermal growth factor(EGF)was designed to provide antibacterial/pro-angiogenic and osteo/odontogenic multiple therapeutic effects.Amine-functionalized Cu-doped bioactive glass nanospheres(Cu-BGn)were prepared to be 50–60 nm in size,mesoporous,positive-charged and bone-bioactive.The Cu-BGn could release bioactive ions(copper,calcium and silicate ions)with therapeutically-effective doses.The Cu-BGn treatment to human umbilical vein endothelial cells(HUVEC)led to significant enhancement of the migration,tubule formation and expression of angiogenic gene(e.g.vascular endothelial growth factor,VEGF).Furthermore,the EGF-loaded Cu-BGn(EGF@Cu-BGn)showed pro-angiogenic effects with antibacterial activity against E.faecalis,a pathogen commonly involved in the pulp infection.Of note,under the co-culture condition of HUVEC with E.faecalis,the secretion of VEGF was up-regulated.In addition,the osteo/odontogenic stimulation of the EGF@Cu-BGn was evidenced with human dental pulp stem cells.The local administration of the EGF@Cu-BGn in a rat molar tooth defect infected with E.faecalis revealed significant in vivo regenerative capacity,highlighting the nanotherapeutic uses of the multifunctional nanoparticles for regenerating infected/damaged hard tissues.展开更多
基金supported by the Research Fund from Science and Technology Department of Sichuan Province (No. 2009FZ0065)Key Project of the Science and Technology Department of Sichuan Province (No. 2011SZ0101)+1 种基金Doctoral Fund of Ministry of Education of China (No. 20120181120002)supported by Open Fund of State Key Laboratory of Oral Diseases, Sichuan University
文摘Tooth bleaching agents may weaken the tooth structure. Therefore, it is important to minimize any risks of tooth hard tissue damage caused by bleaching agents. The aim of this study was to evaluate the effects of applying 45S5 bioglass (BG) before, after, and during 35% hydrogen peroxide (HP) bleaching on whitening efficacy, physicochemical properties and microstructures of bovine enamel. Seventy-two bovine enamel blocks were prepared and randomly divided into six groups: distilled deionized water (DDW), BG, HP, BG before HP, BG after HP and BG during HP. Colorimetric and microhardness tests were performed before and after the treatment procedure. Representative specimens from each group were selected for morphology investigation after the final tests. A significant color change was observed in group HP, BG before HP, BG after HP and BG during HP. The microhardness loss was in the following order: group HP〉 BG before HP, BG after HP〉 BG during HP〉DDW, BG. The most obvious morphological alteration of was observed on enamel surfaces in group HP, and a slight morphological alteration was also detected in group BG before HP and BG after HP. Our findings suggest that the combination use of BG and HP could not impede the tooth whitening efficacy. Using BG during HP brought better protective effect than pre/post-bleaching use of BG, as it could more effectively reduce the mineral loss as well as retain the surface integrity of enamel. BG may serve as a promising biomimetic adjunct for bleaching therapy to prevent/restore the enamel damage induced by bleaching agents.
基金the Natural Science Foundation of China(grant No.31771024 and 31971274)the Interdisciplinary Program of Shanghai Jiao Tong University(project number:ZH2018ZDA20).
文摘More and more studies have recognized that the nanosized pores of hydrogels are too small for cells to normally grow and newly formed tissue to infiltrate,which impedes tissue regeneration.Recently,hydrogels with macropores and/or controlled degradation attract more and more attention for solving this problem.Sodium alginate/Bioglass(SA/BG)hydrogel,which has been reported to be an injectable and bioactive hydrogel,is also limited to be used as tissue engineering scaffolds due to its nanosized pores.Therefore,in this study,degradation of SA/BG hydrogel was modulated by grafting deferoxamine(DFO)to SA.The functionalized grafted DFO-SA(G-DFO-SA)was used to form G-DFO-SA/BG injectable hydrogel.In vitro degradation experiments proved that,compared to SA/BG hydrogel,G-DFO-SA/BG hydrogel had a faster mass loss and structural disintegration.When the hydrogels were implanted subcutaneously,G-DFO-SA/BG hydrogel possessed a faster degradation and better tissue infiltration as compared to SA/BG hydrogel.In addition,in a rat full-thickness skin defect model,wound healing studies showed that,G-DFO-SA/BG hydrogel significantly accelerated wound healing process by inducing more blood vessels formation.Therefore,G-DFO-SA/BG hydrogel can promote tissue infiltration and stimulate angiogenesis formation,which suggesting a promising application potential in tissue regeneration.
基金a National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(2019R1C1C1002490,2018R1A2B3003446)by the Global Research Development Center Program(2018K1A4A3A01064257)by the Priority Research Center Program provided by the Ministry of Education(2019R1A6A1A11034536)。
文摘Therapeutic options are quite limited in clinics for the successful repair of infected/degenerated tissues.Although the prevalent treatment is the complete removal of the whole infected tissue,this leads to a loss of tissue function and serious complications.Herein the dental pulp infection,as one of the most common dental problems,was selected as a clinically relevant case to regenerate using a multifunctional nanotherapeutic approach.For this,a mesoporous bioactive glass nano-delivery system incorporating silicate,calcium,and copper as well as loading epidermal growth factor(EGF)was designed to provide antibacterial/pro-angiogenic and osteo/odontogenic multiple therapeutic effects.Amine-functionalized Cu-doped bioactive glass nanospheres(Cu-BGn)were prepared to be 50–60 nm in size,mesoporous,positive-charged and bone-bioactive.The Cu-BGn could release bioactive ions(copper,calcium and silicate ions)with therapeutically-effective doses.The Cu-BGn treatment to human umbilical vein endothelial cells(HUVEC)led to significant enhancement of the migration,tubule formation and expression of angiogenic gene(e.g.vascular endothelial growth factor,VEGF).Furthermore,the EGF-loaded Cu-BGn(EGF@Cu-BGn)showed pro-angiogenic effects with antibacterial activity against E.faecalis,a pathogen commonly involved in the pulp infection.Of note,under the co-culture condition of HUVEC with E.faecalis,the secretion of VEGF was up-regulated.In addition,the osteo/odontogenic stimulation of the EGF@Cu-BGn was evidenced with human dental pulp stem cells.The local administration of the EGF@Cu-BGn in a rat molar tooth defect infected with E.faecalis revealed significant in vivo regenerative capacity,highlighting the nanotherapeutic uses of the multifunctional nanoparticles for regenerating infected/damaged hard tissues.