为研究双峰孔隙结构对非饱和土力学特性的影响,以广西南宁和桂林2种典型双峰孔隙结构黏土为研究对象,分析了其在不同饱和度情况下的抗剪强度特性;辅以滤纸法及核磁共振(nuclear magnetic resonance,NMR)技术探究了2种土体在双峰孔隙结...为研究双峰孔隙结构对非饱和土力学特性的影响,以广西南宁和桂林2种典型双峰孔隙结构黏土为研究对象,分析了其在不同饱和度情况下的抗剪强度特性;辅以滤纸法及核磁共振(nuclear magnetic resonance,NMR)技术探究了2种土体在双峰孔隙结构情况下孔隙水分布状态对强度的影响机理。结果表明:饱和状态下,2种土体试样的T2分布曲线为双峰结构,且土样持水特性整体上均呈现双峰土水特征曲线;2种土体的应力-位移关系变化规律相似,抗剪强度与饱和度密切相关;在饱和度为40%前后土样黏聚力变化趋势发生改变,而内摩擦角则是在饱和度为80%时达到最小值。展开更多
Carbon materials have shown remarkable usefulness in facilitating the performance of insulating sulfur cathode for lithium–sulfur batteries owing to their excellent conductivity and porous structure. However,the anxi...Carbon materials have shown remarkable usefulness in facilitating the performance of insulating sulfur cathode for lithium–sulfur batteries owing to their excellent conductivity and porous structure. However,the anxiety is the poor affinity toward polar polysulfides due to the intrinsic nonpolar surface of carbon.Herein, we report a direct pyrolysis of the mixture urea and boric acid to synthesize B/N–codoped hierarchically porous carbon nanosheets(B–N–CSs) as efficient sulfur host for lithium–sulfur battery. The graphene–like B–N–CSs provides high specific surface area and porous structure with abundant micropores(1.1 nm) and low–range mesopores(2.3 nm), thereby constraining the sulfur active materials within the pores. More importantly, the codoped B/N elements can further enhance the polysulfide confinement through strong Li–N and B–S interaction based on the Lewis acid–base theory. These structural superiorities significantly suppress the shuttle effect by both physical confinement and chemical interaction, and promote the redox kinetics of polysulfide conversion. When evaluated as the cathode host, the S/B–N–CSs composite displays the excellent performance with a high reversible capacity up to 772 m A h g–1 at 0.5 C and a low fading rate of ^0.09% per cycle averaged upon 500 cycles. In particular, remarkable stability with a high capacity retention of 87.1% can be realized when augmenting the sulfur loading in the cathode up to 4.6 mg cm^(-2).展开更多
The catalytic property of AICl(3) catalyst immobilized on gamma -Al2O3 for isobutene polymerization has been studied. It was found that the activity, selectivity and stability of the catalyst are dependent greatly on ...The catalytic property of AICl(3) catalyst immobilized on gamma -Al2O3 for isobutene polymerization has been studied. It was found that the activity, selectivity and stability of the catalyst are dependent greatly on geometric characteristic pf the pore structure and size of catalyst. Although the activity and selectivity of the catalysts with micro- and meso-pore structure are all high in initial stage, but their stability is low, while those with bimodal meso- and macro-pore structure are excellent. Increasing granularity of the catalyst(particle become fine) brings about an increase in isobutene conversion, but a decrease in selectivity, resulting in lower average molecular weight and iis broader distribution.展开更多
基金supported by the National Natural Science Foundation of China(21337003,21477149)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB05050200)~~
文摘为研究双峰孔隙结构对非饱和土力学特性的影响,以广西南宁和桂林2种典型双峰孔隙结构黏土为研究对象,分析了其在不同饱和度情况下的抗剪强度特性;辅以滤纸法及核磁共振(nuclear magnetic resonance,NMR)技术探究了2种土体在双峰孔隙结构情况下孔隙水分布状态对强度的影响机理。结果表明:饱和状态下,2种土体试样的T2分布曲线为双峰结构,且土样持水特性整体上均呈现双峰土水特征曲线;2种土体的应力-位移关系变化规律相似,抗剪强度与饱和度密切相关;在饱和度为40%前后土样黏聚力变化趋势发生改变,而内摩擦角则是在饱和度为80%时达到最小值。
基金financial support of the National Natural Science Foundation of China (Grant No. 21263016, 21363015, 51662029, 21863006)the Youth Science Foundation of Jiangxi Province (Grant No. 20192BAB216001)the Key Laboratory of Jiangxi Province for Environment and Energy Catalysis (20181BCD40004)。
文摘Carbon materials have shown remarkable usefulness in facilitating the performance of insulating sulfur cathode for lithium–sulfur batteries owing to their excellent conductivity and porous structure. However,the anxiety is the poor affinity toward polar polysulfides due to the intrinsic nonpolar surface of carbon.Herein, we report a direct pyrolysis of the mixture urea and boric acid to synthesize B/N–codoped hierarchically porous carbon nanosheets(B–N–CSs) as efficient sulfur host for lithium–sulfur battery. The graphene–like B–N–CSs provides high specific surface area and porous structure with abundant micropores(1.1 nm) and low–range mesopores(2.3 nm), thereby constraining the sulfur active materials within the pores. More importantly, the codoped B/N elements can further enhance the polysulfide confinement through strong Li–N and B–S interaction based on the Lewis acid–base theory. These structural superiorities significantly suppress the shuttle effect by both physical confinement and chemical interaction, and promote the redox kinetics of polysulfide conversion. When evaluated as the cathode host, the S/B–N–CSs composite displays the excellent performance with a high reversible capacity up to 772 m A h g–1 at 0.5 C and a low fading rate of ^0.09% per cycle averaged upon 500 cycles. In particular, remarkable stability with a high capacity retention of 87.1% can be realized when augmenting the sulfur loading in the cathode up to 4.6 mg cm^(-2).
文摘The catalytic property of AICl(3) catalyst immobilized on gamma -Al2O3 for isobutene polymerization has been studied. It was found that the activity, selectivity and stability of the catalyst are dependent greatly on geometric characteristic pf the pore structure and size of catalyst. Although the activity and selectivity of the catalysts with micro- and meso-pore structure are all high in initial stage, but their stability is low, while those with bimodal meso- and macro-pore structure are excellent. Increasing granularity of the catalyst(particle become fine) brings about an increase in isobutene conversion, but a decrease in selectivity, resulting in lower average molecular weight and iis broader distribution.