The electrical and magnetic properties of bilayer manganites La1.4Sr1.6Mn1.96TE0.04O7(TE = Mn, Fe, Ti, Nb) were investigated. Doping caused obvious changes in electrical and magnetic behaviors such as decrease of in...The electrical and magnetic properties of bilayer manganites La1.4Sr1.6Mn1.96TE0.04O7(TE = Mn, Fe, Ti, Nb) were investigated. Doping caused obvious changes in electrical and magnetic behaviors such as decrease of insulator-metal transition and magnetic transition temperatures, increase of peak resistivity, and different magnetoresistance effect. These changes had a significant degree of correlation with the valence of doped ions. From Fe, Ti to Nb doping, the effect was doubly stronger. The results could be well understood by considering the different destructions on double-exchange interaction and different influences on lattice distortion caused by Fe, Ti and Nb doping. The temperature dependence of magnetization measured at high field showed that the influence of doping was greatest near three-dimensional magnetic transition temperature of parent phase.展开更多
基金Project supported by the National "973" Project (2006CB921606 )National Natural Science Foundation of China(10574049)Foundation from the Ministry of the National Education (20060487011)
文摘The electrical and magnetic properties of bilayer manganites La1.4Sr1.6Mn1.96TE0.04O7(TE = Mn, Fe, Ti, Nb) were investigated. Doping caused obvious changes in electrical and magnetic behaviors such as decrease of insulator-metal transition and magnetic transition temperatures, increase of peak resistivity, and different magnetoresistance effect. These changes had a significant degree of correlation with the valence of doped ions. From Fe, Ti to Nb doping, the effect was doubly stronger. The results could be well understood by considering the different destructions on double-exchange interaction and different influences on lattice distortion caused by Fe, Ti and Nb doping. The temperature dependence of magnetization measured at high field showed that the influence of doping was greatest near three-dimensional magnetic transition temperature of parent phase.