针对传统大数据流式计算平台节能策略并未考虑数据处理及传输的实时性问题,首先根据数据流处理的特点与storm集群的结构,建立有向无环图、实例并行度、任务资源分配与关键路径模型。其次结合拓扑执行关键路径与系统性能的分析,提出一种s...针对传统大数据流式计算平台节能策略并未考虑数据处理及传输的实时性问题,首先根据数据流处理的特点与storm集群的结构,建立有向无环图、实例并行度、任务资源分配与关键路径模型。其次结合拓扑执行关键路径与系统性能的分析,提出一种storm平台下工作节点的内存电压调控节能策略(WNDVR-storm,energy-efficient strategy for work node by dram voltage regulation in storm),该策略针对是否有工作节点位于拓扑执行的非关键路径上设计了2种节能算法。最后根据系统数据处理及传输的制约条件确定工作节点CPU使用率与数据传输量的阈值,并对选定的工作节点内存电压做出动态调整。实验结果表明,该策略能有效降低能耗,且制约条件越小节能效率越高。展开更多
文摘针对传统大数据流式计算平台节能策略并未考虑数据处理及传输的实时性问题,首先根据数据流处理的特点与storm集群的结构,建立有向无环图、实例并行度、任务资源分配与关键路径模型。其次结合拓扑执行关键路径与系统性能的分析,提出一种storm平台下工作节点的内存电压调控节能策略(WNDVR-storm,energy-efficient strategy for work node by dram voltage regulation in storm),该策略针对是否有工作节点位于拓扑执行的非关键路径上设计了2种节能算法。最后根据系统数据处理及传输的制约条件确定工作节点CPU使用率与数据传输量的阈值,并对选定的工作节点内存电压做出动态调整。实验结果表明,该策略能有效降低能耗,且制约条件越小节能效率越高。