In this paper, the dynamical properties of Smith type diffusion model with Dirichlet boundary conditions are studied. The properties of hyperbolic fixed points and non-hyperbolic fixed points of the model are analyzed...In this paper, the dynamical properties of Smith type diffusion model with Dirichlet boundary conditions are studied. The properties of hyperbolic fixed points and non-hyperbolic fixed points of the model are analyzed. By using the central manifold theorem, the bifurcation phenomenon of the model is studied. The results show that flip, transcritical, pitchfork and Fold-flip bifurcations exist at non-hyperbolic fixed points.展开更多
In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic m...In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic model into a planar map. Then we find out its equilibrium points and eigenvalues. From discussing the influence of the coefficient parameters effected on the eigenvalues, we give the hyperbolicity of equilibrium points and determine which point is saddle, node or focus as well as their stability. Further, by deriving equations describing flows on the center manifolds, we discuss the transcritical bifurcation at the non-hyperbolic equilibrium point. Finally, we give some numerical simulation examples for illustrating the theoretical analysis and the biological explanation of our theorem.展开更多
文摘In this paper, the dynamical properties of Smith type diffusion model with Dirichlet boundary conditions are studied. The properties of hyperbolic fixed points and non-hyperbolic fixed points of the model are analyzed. By using the central manifold theorem, the bifurcation phenomenon of the model is studied. The results show that flip, transcritical, pitchfork and Fold-flip bifurcations exist at non-hyperbolic fixed points.
文摘In this paper, a class of discrete deterministic SIR epidemic model with vertical and horizontal transmission is studied. Based on the population assumed to be a constant size, we transform the discrete SIR epidemic model into a planar map. Then we find out its equilibrium points and eigenvalues. From discussing the influence of the coefficient parameters effected on the eigenvalues, we give the hyperbolicity of equilibrium points and determine which point is saddle, node or focus as well as their stability. Further, by deriving equations describing flows on the center manifolds, we discuss the transcritical bifurcation at the non-hyperbolic equilibrium point. Finally, we give some numerical simulation examples for illustrating the theoretical analysis and the biological explanation of our theorem.