期刊文献+
共找到111篇文章
< 1 2 6 >
每页显示 20 50 100
基于CNN和BiLSTM网络特征融合的文本情感分析 被引量:111
1
作者 李洋 董红斌 《计算机应用》 CSCD 北大核心 2018年第11期3075-3080,共6页
卷积神经网络(CNN)和循环神经网络(RNN)在自然语言处理上得到广泛应用,但由于自然语言在结构上存在着前后依赖关系,仅依靠卷积神经网络实现文本分类将忽略词的上下文含义,且传统的循环神经网络存在梯度消失或梯度爆炸问题,限制了文本分... 卷积神经网络(CNN)和循环神经网络(RNN)在自然语言处理上得到广泛应用,但由于自然语言在结构上存在着前后依赖关系,仅依靠卷积神经网络实现文本分类将忽略词的上下文含义,且传统的循环神经网络存在梯度消失或梯度爆炸问题,限制了文本分类的准确率。为此,提出一种卷积神经网络和双向长短时记忆(Bi LSTM)特征融合的模型,利用卷积神经网络提取文本向量的局部特征,利用Bi LSTM提取与文本上下文相关的全局特征,将两种互补模型提取的特征进行融合,解决了单卷积神经网络模型忽略词在上下文语义和语法信息的问题,也有效避免了传统循环神经网络梯度消失或梯度弥散问题。在两种数据集上进行对比实验,实验结果表明,所提特征融合模型有效提升了文本分类的准确率。 展开更多
关键词 词向量 卷积神经网络 双向长短时记忆 特征融合 文本情感分析
下载PDF
《史记》历史事件自动抽取与事理图谱构建研究 被引量:25
2
作者 刘忠宝 党建飞 张志剑 《图书情报工作》 CSSCI 北大核心 2020年第11期116-124,共9页
[目的/意义]《史记》是我国第一部纪传体史书,几乎囊括黄帝时代到汉武帝元狩元年3000多年的重大历史事件。如何快速准确地发现这些历史事件及其之间的内在联系,对于透过历史现象、揭示历史实质以及发现历史规律具有重要意义。[方法/过程... [目的/意义]《史记》是我国第一部纪传体史书,几乎囊括黄帝时代到汉武帝元狩元年3000多年的重大历史事件。如何快速准确地发现这些历史事件及其之间的内在联系,对于透过历史现象、揭示历史实质以及发现历史规律具有重要意义。[方法/过程]在BERT模型和LSTM-CRF模型的基础上,提出面向《史记》的历史事件及其组成元素抽取方法,并基于此构建《史记》事理图谱。[结果/结论]实验结果表明,利用所提方法抽取历史事件及其组成元素的F1值分别达到0.823和0.760。通过事理图谱能够发现蕴含在《史记》中鲜为人知的知识,这为文献学、历史学、社会学等领域专家开展研究提供必要的资料准备。 展开更多
关键词 《史记》 历史事件抽取 事理图谱 BERT模型 双向长短期记忆网络 条件随机场
原文传递
基于CNN-BiLSTM网络及注意力机制的智能滚动轴承剩余寿命预测方法 被引量:18
3
作者 赵广谦 姜培刚 林天然 《机电工程》 CAS 北大核心 2021年第10期1253-1260,共8页
为了充分利用数据间的时序特性,实现对滚动轴承剩余使用寿命(RUL)的精确预测,提出了一种基于卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)的滚动轴承RUL智能预测方法。首先,提取出数据中的12个时域特征和4个频域特征作为神经网络的输... 为了充分利用数据间的时序特性,实现对滚动轴承剩余使用寿命(RUL)的精确预测,提出了一种基于卷积神经网络(CNN)和双向长短时记忆网络(BiLSTM)的滚动轴承RUL智能预测方法。首先,提取出数据中的12个时域特征和4个频域特征作为神经网络的输入;然后,设计了一种基于注意力机制的CNN-BiLSTM算法,对输入数据进行了退化特征提取,并进一步解决了BiLSTM在远距离信号传输中信息丢失的问题;最后,采用PHM 2012轴承退化数据集,通过轴承加速退化PRONOSTIA实验平台,验证了所提方法的有效性,并将其结果与FCNN、CNN-BiLSTM和CNN-LSTM-AM算法所得结果进行了对比分析。研究结果表明:与采用其他方法所得结果相比,采用本文所提方法得到的轴承RUL预测RMSE值分别降低了25.85%、7.32%和10.59%,Score得分则分别提高了3.65%、2.12%和1.58%,该结果验证了本文所提方法在轴承RUL预测应用方面的优越性。 展开更多
关键词 滚动轴承 剩余使用寿命 卷积神经网络 双向长短时记忆网络 注意力机制
下载PDF
融合CNN与BiLSTM的网络入侵检测方法 被引量:17
4
作者 刘月峰 蔡爽 +1 位作者 杨涵晰 张晨荣 《计算机工程》 CAS CSCD 北大核心 2019年第12期127-133,共7页
针对网络入侵检测准确率偏低而误报率偏高的问题,提出一种融合卷积神经网络(CNN)与双向长短期记忆(BiLSTM)网络的网络入侵检测方法。对KDDcup99数据集进行预处理,并分别使用CNN模型、BiLSTM模型提取局部特征和长距离依赖特征,通过注意... 针对网络入侵检测准确率偏低而误报率偏高的问题,提出一种融合卷积神经网络(CNN)与双向长短期记忆(BiLSTM)网络的网络入侵检测方法。对KDDcup99数据集进行预处理,并分别使用CNN模型、BiLSTM模型提取局部特征和长距离依赖特征,通过注意力机制计算特征的重要性,利用softmax分类器获得最终的分类结果。实验结果表明,与基于CNN和基于LSTM的方法相比,该方法的网络入侵检测效果较好,其准确率可提高至95.0%,误检率可降低至5.1%。 展开更多
关键词 深度学习 卷积神经网络 双向长短期记忆 注意力机制 入侵检测
下载PDF
基于双向LSTM的维吾尔语事件因果关系抽取 被引量:16
5
作者 田生伟 周兴发 +3 位作者 禹龙 冯冠军 艾山.吾买尔 李圃 《电子与信息学报》 EI CSCD 北大核心 2018年第1期200-208,共9页
针对传统方法不能有效抽取维吾尔语事件因果关系的问题,该文提出一种基于双向LSTM(Bidirectional Long Short-Term Memory,Bi LSTM)的维吾尔语事件因果关系抽取方法。通过对维吾尔语语言以及事件因果关系特点的研究,提取出10项基于事件... 针对传统方法不能有效抽取维吾尔语事件因果关系的问题,该文提出一种基于双向LSTM(Bidirectional Long Short-Term Memory,Bi LSTM)的维吾尔语事件因果关系抽取方法。通过对维吾尔语语言以及事件因果关系特点的研究,提取出10项基于事件内部结构信息的特征;同时为充分利用事件语义信息,引入词嵌入作为Bi LSTM的输入,提取事件句隐含的深层语义特征并利用批样规范化(Batch Normalization,BN)算法加速Bi LSTM的收敛;最后融合这两类特征作为softmax分类器的输入进而完成维吾尔语事件因果关系抽取。实验结果表明,该方法用于维吾尔语事件因果关系的抽取准确率为89.19%,召回率为83.19%,F值为86.09%,证明了该文提出的方法在维吾尔语事件因果关系抽取上的有效性。 展开更多
关键词 语言信号处理 事件因果关系 维吾尔语 双向LSTM 词嵌入 批样规范化
下载PDF
基于多层BiLSTM和改进粒子群算法的应用负载预测方法 被引量:14
6
作者 蔡亮 周泓岑 +3 位作者 白恒 才振功 尹可挺 贝毅君 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第12期2414-2422,共9页
为了解决常用时序预测算法精度不高和调参困难的问题,提出基于多层双向长短期记忆(BiLSTM)神经网络的负载预测方法,包括网络模型设计、自适应参数设置和改进粒子群算法优化等步骤.将数据输入网络模型中进行训练,使用自适应算法进行自动... 为了解决常用时序预测算法精度不高和调参困难的问题,提出基于多层双向长短期记忆(BiLSTM)神经网络的负载预测方法,包括网络模型设计、自适应参数设置和改进粒子群算法优化等步骤.将数据输入网络模型中进行训练,使用自适应算法进行自动调参;采用基于基准模型的多指标融合的模型评价方法,计算改进粒子群算法的适应度;使用改进粒子群算法优化模型的预测结果.通过与多种典型时间序列预测算法的实验对比,方法的预测平均绝对百分比误差减小3.6%~7.2%,训练时间缩短10%以上,实验结果验证了方法在时间序列预测中具有更高的准确性和很强的适用性,为使用负载预测结果进行弹性扩缩容提供了重要的科学依据. 展开更多
关键词 负载预测 双向长短记忆(bilstm) 粒子群算法(PSO) 自适应算法 多指标融合
下载PDF
基于卷积神经网络与双向长短时融合的锂离子电池剩余使用寿命预测 被引量:10
7
作者 高德欣 刘欣 杨清 《信息与控制》 CSCD 北大核心 2022年第3期318-329,360,共13页
针对锂离子电池剩余使用寿命(remaining useful life,RUL)传统预测方法的精确度与稳定性较低等问题,融合卷积神经网络(convolutional neural network,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的特点... 针对锂离子电池剩余使用寿命(remaining useful life,RUL)传统预测方法的精确度与稳定性较低等问题,融合卷积神经网络(convolutional neural network,CNN)和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络的特点,设计一种锂离子电池剩余使用寿命预测方法。为了充分使用电池数据的时间序列特性,使用一维卷积神经网络(one-dimensional convolutional neural network,1D CNN)提取锂离子电池容量数据深层特征,利用BiLSTM神经网络的记忆功能保留数据中的重要信息,预测电池RUL变化趋势。通过采用NASA(National Aeronautics and Space Administration)的锂离子电池数据,与1D CNN模型、LSTM模型、BiLSTM模型、1D CNN-LSTM模型进行预测对比。经实验结果表明,1D CNN-BiLSTM具有更高的预测稳定性和精度。 展开更多
关键词 锂离子电池 剩余使用寿命预测 融合神经网络 一维卷积神经网络 双向长短期记忆
原文传递
基于改进金豺算法的短期负荷预测 被引量:2
8
作者 谢国民 王润良 《电力系统及其自动化学报》 CSCD 北大核心 2024年第3期65-74,共10页
针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用... 针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用改进金豺算法对双向长短期记忆网络的参数进行优化,并对每个子序列建立预测模型;最后,组合各模型结果得到最终预测值。实验结果表明,本文模型预测精度更高,与真实值拟合度更好。 展开更多
关键词 变分模态分解 改进金豺算法 双向长短期记忆 组合模型 短期负荷预测
下载PDF
基于双向长短期记忆神经网络的储层孔隙度预测方法研究 被引量:6
9
作者 刘俊 曹俊兴 +2 位作者 丁蔚楠 周鹏 程明 《地球物理学进展》 CSCD 北大核心 2022年第5期1993-2000,共8页
孔隙度作为重要的储层物性参数之一,在储层评价中发挥着重要作用,因此,寻找一种低成本、高效的方法获取高精度的孔隙度成为了储层评价的重要课题.由于测井参数和孔隙度之间复杂的非线性映射关系和时序性特点,本文提出了一种基于双向长... 孔隙度作为重要的储层物性参数之一,在储层评价中发挥着重要作用,因此,寻找一种低成本、高效的方法获取高精度的孔隙度成为了储层评价的重要课题.由于测井参数和孔隙度之间复杂的非线性映射关系和时序性特点,本文提出了一种基于双向长短期记忆(BiLSTM)神经网络的储层孔隙度预测方法,通过建立BiLSTM孔隙度预测模型,并在模型中使用Nadam自适应优化算法提高模型训练效率和准确率,引入Dropout正则化技术防止训练过程中发生过拟合,采用ReLU激励函数提高网络的鲁棒性和稳定性,最后利用实际测井数据验证其性能.研究结果表明,相较于长短期记忆循环神经网络(LSTM)、常规循环神经网络(RNN)和全连接深度神经网络(DNN),BiLSTM模型具有更高的预测精度,在储层参数预测方向具有广阔的应用前景. 展开更多
关键词 储层参数预测 深度学习 孔隙度 循环神经网络 双向长短期记忆神经网络 时序数据
原文传递
RF-BiLSTM神经网络在海浪预测中的应用 被引量:5
10
作者 李海涛 孙亚男 付建浩 《计算机系统应用》 2022年第6期331-338,共8页
由于风浪数据的随机性,复杂性,影响因素多,多为时间序列的特点,造成了传统预测模型预测难度大,精确率低,构建了基于随机森林的注意力机制与双向长短期记忆神经网络相结合的海浪预测模型.该模型对输入进行优化,可以使用过去和未来的数据... 由于风浪数据的随机性,复杂性,影响因素多,多为时间序列的特点,造成了传统预测模型预测难度大,精确率低,构建了基于随机森林的注意力机制与双向长短期记忆神经网络相结合的海浪预测模型.该模型对输入进行优化,可以使用过去和未来的数据信息进行预测,提高了海浪波高的预测精度.该模型利用随机森林对输入变量筛选优化,降低网络复杂度,然后将注意力机制与双向长短期记忆神经网络相结合建立预测模型,并利用实际数据进行验证.结果显示,和BP, LSTM, BiLSTM模型比较, RF-BiLSTM模型的预测精度更高,拟合程度更好,在海浪数值的预测预报中有重要意义. 展开更多
关键词 海浪预测 RF-bilstm 随机森林 注意力机制 双向长短期记忆 时间序列
下载PDF
基于1DCNN-BiLSTM-BiGRU的电能质量扰动分类方法
11
作者 王立辉 柯泳 苏如开 《电气技术》 2024年第5期51-56,64,共7页
为了应对电能质量扰动(PQD)识别中噪声干扰导致的识别率下降问题,本文提出一种基于一维卷积神经网络(1DCNN)-双向长短期记忆(BiLSTM)网络-双向门控循环单元(BiGRU)的PQD分类方法。该方法首先借助1DCNN有效地提取原始信号的浅层局部特征... 为了应对电能质量扰动(PQD)识别中噪声干扰导致的识别率下降问题,本文提出一种基于一维卷积神经网络(1DCNN)-双向长短期记忆(BiLSTM)网络-双向门控循环单元(BiGRU)的PQD分类方法。该方法首先借助1DCNN有效地提取原始信号的浅层局部特征,然后通过BiLSTM和BiGRU组合模块对时序信息和上下文关系进行深入处理,从而实现深层时序特征的提取。最后,将所提取的特征经分类模块用于PQD识别。仿真结果表明,与传统方法相比,本文所提方法在准确性方面更具优势,且抗噪声能力更强。 展开更多
关键词 电能质量 一维卷积神经网络(1DCNN) 双向长短期记忆(bilstm)网络 双向门控循环单元(BiGRU)
下载PDF
基于深度学习模型的摘要结构功能识别方法研究 被引量:6
12
作者 刘忠宝 王宇飞 张志剑 《情报科学》 CSSCI 北大核心 2021年第3期107-112,共6页
【目的/意义】学术文献的摘要由目的、方法、结果等结构组成,这些结构具有特定的功能。目前,针对摘要功能结构识别的研究不多,且存在识别效率不高的问题,本文引入双向循环神经网络(Bidirectional Recurrent Neural Network, BiRNN)、双... 【目的/意义】学术文献的摘要由目的、方法、结果等结构组成,这些结构具有特定的功能。目前,针对摘要功能结构识别的研究不多,且存在识别效率不高的问题,本文引入双向循环神经网络(Bidirectional Recurrent Neural Network, BiRNN)、双向长短时记忆网络(Bidirectional Long Short Term Memory, BiLSTM)、BiLSTM-CRF、BERT等深度学习模型,对1232篇情报类期刊论文进行摘要结构功能识别研究。【方法/过程】引入5折交叉验证法进行多次实验,以避免一次实验的偶然性;实验结果用"均值±标准差"形式表示,同时考虑模型的平均性能和稳定性;实验结果用F1值进行评价。【结果/结论】与BiRNN、BiLSTM、BiLSTM-CRF等模型相比,BERT模型具有最高的均值和最低的标准差,这表明该模型不仅具有最优的结构功能识别能力,而且性能稳定,该模型特别适用于摘要结构功能识别任务。【局限/创新】本文采用的实验语料规模较小且为人工标注,这限制了识别效率的提升。 展开更多
关键词 结构功能识别 深度学习模型 双向循环神经网络 双向长短时记忆网络 条件随机场 BERT模型
原文传递
基于BiLSTM-XGBoost混合模型的储层岩性识别
13
作者 杜睿山 黄玉朋 +2 位作者 孟令东 张轶楠 周长坤 《计算机系统应用》 2024年第6期108-116,共9页
储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidi... 储层岩性分类是地质研究基础,基于数据驱动的机器学习模型虽然能较好地识别储层岩性,但由于测井数据是特殊的序列数据,模型很难有效提取数据的空间相关性,造成模型对储层识别仍存在不足.针对此问题,本文结合双向长短期循环神经网络(bidirectional long short-term memory,BiLSTM)和极端梯度提升决策树(extreme gradient boosting decision tree,XGBoost),提出双向记忆极端梯度提升(BiLSTM-XGBoost,BiXGB)模型预测储层岩性.该模型在传统XGBoost基础上融入了BiLSTM,大大增强了模型对测井数据的特征提取能力.BiXGB模型使用BiLSTM对测井数据进行特征提取,将提取到的特征传递给XGBoost分类模型进行训练和预测.将BiXGB模型应用于储层岩性数据集时,模型预测的总体精度达到了91%.为了进一步验证模型的准确性和稳定性,将模型应用于UCI公开的Occupancy序列数据集,结果显示模型的预测总体精度也高达93%.相较于其他机器学习模型,BiXGB模型能准确地对序列数据进行分类,提高了储层岩性的识别精度,满足了油气勘探的实际需要,为储层岩性识别提供了新的方法. 展开更多
关键词 神经网络 机器学习 测井数据 岩性分类 bilstm XGBoost
下载PDF
基于BERT+CNN_BiLSTM的列控车载设备故障诊断
14
作者 陈永刚 贾水兰 +2 位作者 朱键 韩思成 熊文祥 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第1期120-127,共8页
列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型... 列控车载设备作为列车运行控制系统核心设备,在高速列车运行过程中发挥着重要作用。目前,其故障诊断仅依赖于现场作业人员经验,诊断效率相对较低。为了实现列控车载设备故障自动诊断并提高诊断效率,提出了BERT+CNN_BiLSTM故障诊断模型。首先,使用来自变换器的双向编码器表征量(Bidirectional encoder representations from transformers,BERT)模型将应用事件日志(Application event log,AElog)转换为计算机能够识别的可以挖掘语义信息的文本向量表示。其次,分别利用卷积神经网络(Convolutional neural network,CNN)和双向长短时记忆网络(Bidirectional long short-term memory,BiLSTM)提取故障特征并进行组合,从而增强空间和时序能力。最后,利用Softmax实现列控车载设备的故障分类与诊断。实验中,选取一列实际运行的列车为研究对象,以运行过程中产生的AElog日志作为实验数据来验证BERT+CNN_BiLSTM模型的性能。与传统机器学习算法、BERT+BiLSTM模型和BERT+CNN模型相比,BERT+CNN_BiLSTM模型的准确率、召回率和F1分别为92.27%、91.03%和91.64%,表明该模型在高速列车控制系统故障诊断中性能优良。 展开更多
关键词 车载设备 故障诊断 来自变换器的双向编码器表征量 应用事件日志 双向长短时记忆网络 卷积神经网络
下载PDF
基于VMD-BO-BiLSTM的猪肉价格预测模型 被引量:2
15
作者 胡春安 江维 《应用科学学报》 CAS CSCD 北大核心 2023年第4期692-704,共13页
基于猪肉价格的非线性与波动性特性,提出一种基于变分模态分解(variational modal decomposition,VMD)和贝叶斯优化(Bayesian optimization,BO)的双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的猪肉价格预测方法... 基于猪肉价格的非线性与波动性特性,提出一种基于变分模态分解(variational modal decomposition,VMD)和贝叶斯优化(Bayesian optimization,BO)的双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络的猪肉价格预测方法。首先采用变分模态分解对数据进行预处理,将数据分解为具有相对简单波动的子序列;然后通过贝叶斯算法对双向长短时记忆网络模型的第1、2隐含层神经元数目、学习率和批次大小进行寻优,根据寻优的结果建立预测模型。实验结果表明:VMD-BO-BiLSTM方法的平均绝对误差、均方根误差、平均绝对百分比误差和确定系数分别为1.101214、1.466100、0.040631、0.987760,相比传统单一的LSTM,BiLSTM模型精确度更高,有更高的适用性,适合对猪肉价格预测。 展开更多
关键词 双向长短时记忆 贝叶斯 猪肉价格预测 变分模态分解 超参数
下载PDF
机场附近频繁变换场景下的6D飞行轨迹预测
16
作者 陈昂 李敬有 李大辉 《高师理科学刊》 2024年第3期43-50,共8页
日益增多的航空活动对航空交通管制提出了挑战,轨迹预测技术在保障空中交通的安全和有序中发挥着重要作用.机场附近更加密集的航班给轨迹预测带来了困难.基于广播式自动相关监视系统,提出了一种基于卷积注意力(Attention-CNNs)的双向长... 日益增多的航空活动对航空交通管制提出了挑战,轨迹预测技术在保障空中交通的安全和有序中发挥着重要作用.机场附近更加密集的航班给轨迹预测带来了困难.基于广播式自动相关监视系统,提出了一种基于卷积注意力(Attention-CNNs)的双向长短时记忆网络(BiLSTM)和极端梯度提升(XGBoost)的混合神经网络模型,能够对飞行轨迹的6D信息(时间、经度、纬度、高度、速度、航向角)进行预测.由包含空间位置和时间戳的时空信息和飞行动态信息组成的轨迹集用于证明该方法的效率.定量分析表明,所提出的模型在评价指标上的表现优于对比模型,为机场环境下航空管理系统的安全运行提供了有效方法. 展开更多
关键词 航空交通管理 轨迹预测 卷积神经网络 双向长短时记忆网络 注意力机制
下载PDF
融合先验知识和字形特征的中文命名实体识别
17
作者 董永峰 白佳明 +1 位作者 王利琴 王旭 《计算机应用》 CSCD 北大核心 2024年第3期702-708,共7页
针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入... 针对命名实体识别(NER)任务中相关模型通常仅对字符及相关词汇进行建模,未充分利用汉字特有的字形结构信息和实体类型信息的问题,提出一种融合先验知识和字形特征的命名实体识别模型。首先,采用结合高斯注意力机制的Transformer对输入序列进行编码,并从中文维基百科中获取实体类型的中文释义,采用双向门控循环单元(BiGRU)编码实体类型信息作为先验知识,利用注意力机制将它与字符表示进行组合;其次,采用双向长短时记忆(BiLSTM)网络编码输入序列的远距离依赖关系,通过字形编码表获得繁体的仓颉码和简体的现代五笔码,采用卷积神经网络(CNN)提取字形特征表示,并根据不同权重组合繁体与简体字形特征,利用门控机制将它与经过BiLSTM编码后的字符表示进行组合;最后,使用条件随机场(CRF)解码,得到命名实体标注序列。在偏口语化的数据集Weibo、小型数据集Boson和大型数据集PeopleDaily上的实验结果表明,与基线模型MECT(Multi-metadata Embedding based Cross-Transformer)相比,所提模型的F1值别提高了2.47、1.20和0.98个百分点,验证了模型的有效性。 展开更多
关键词 命名实体识别 注意力机制 卷积神经网络 双向长短时记忆 条件随机场
下载PDF
基于BiLSTM-CatBoost模型的电力用户异常用电检测 被引量:2
18
作者 吴泽黎 李清清 梁皓 《自动化与仪表》 2023年第5期22-27,共6页
为进一步提高电力用户异常用电检测性能,实现异常用电行为的快速准确研判,该文提出一种基于BiLSTM-CatBoost模型的用户异常用电检测方法。该模型首先采用双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)对用户用... 为进一步提高电力用户异常用电检测性能,实现异常用电行为的快速准确研判,该文提出一种基于BiLSTM-CatBoost模型的用户异常用电检测方法。该模型首先采用双向长短期记忆神经网络(bidirectional long short-term memory,BiLSTM)对用户用电数据进行特征深度提取,利用用电时序数据两个方向的信息来获取特征维度;接着采用完全对称决策树为基学习器的CatBoost集成学习算法作为分类器进行检测,避免检测过拟合。BiLSTM和CatBoost均采用贝叶斯优化算法(Bayesian optimization,BO)对全局进行超参数寻优。实例对比表明,基于BiLSTM-CatBoost模型的用户异常用电检测方法在准确率、F1分数、AUC、MCC值等评价指标中均表现最优。 展开更多
关键词 异常用电检测 双向长短期记忆神经网络 CatBoost 深度学习 集成学习
下载PDF
CS算法优化VMD-BiLSTM-AM的光伏功率预测 被引量:1
19
作者 俞敏 王晓霞 《计算机系统应用》 2023年第2期347-355,共9页
针对光伏发电功率的波动性与随机性对调度部门的负荷预测以及电网安全运行带来的严峻挑战,提出了一种基于变分模态分解(VMD)和布谷鸟搜索(CS)算法优化的双向长短期记忆网络(BiLSTM)光伏发电功率预测方法.首先使用VMD将光伏功率序列分解... 针对光伏发电功率的波动性与随机性对调度部门的负荷预测以及电网安全运行带来的严峻挑战,提出了一种基于变分模态分解(VMD)和布谷鸟搜索(CS)算法优化的双向长短期记忆网络(BiLSTM)光伏发电功率预测方法.首先使用VMD将光伏功率序列分解成不同频率的子模态,通过皮尔逊相关性分析确定影响各模态的关键气象因子.其次分别构建注意力机制(AM)和BiLSTM混合的光伏发电功率预测模型,利用CS算法获取网络最优的权重和阈值.最后,将不同模态的预测结果相叠加,得到最终的预测结果.通过对亚利桑那州地区光伏电站输出功率进行预测,验证了所提模型的有效性. 展开更多
关键词 双向长短期记忆网络 变分模态分解 布谷鸟搜索 注意力机制 光伏功率预测
下载PDF
基于轨迹映射的无人机拖曳式空中回收轨迹优化 被引量:1
20
作者 王宏伦 王延祥 刘一恒 《航空学报》 EI CAS CSCD 北大核心 2023年第20期1-17,共17页
针对无人机拖曳式空中回收过程中的轨迹优化问题,提出一种基于轨迹映射的无人机回收轨迹在线优化方法。首先,建立包括缆绳-浮标-无人机组合体的运动模型、机翼折叠模型在内的空中回收系统模型。随后,提出轨迹映射的思想,利用双向长短期... 针对无人机拖曳式空中回收过程中的轨迹优化问题,提出一种基于轨迹映射的无人机回收轨迹在线优化方法。首先,建立包括缆绳-浮标-无人机组合体的运动模型、机翼折叠模型在内的空中回收系统模型。随后,提出轨迹映射的思想,利用双向长短期记忆(BiLSTM)神经网络建立回收系统中回收指令和回收轨迹之间的精确映射关系。然后,利用轨迹映射网络实时预测不同指令下的回收轨迹,并根据计算的预测轨迹代价利用粒子群优化(PSO)算法优化得到最佳回收指令。最后,仿真结果表明:所提的轨迹映射网络具有较高的预测精度和计算速度,所提的方法可以优化出使无人机稳定快速回收的轨迹。 展开更多
关键词 空中回收 轨迹优化 轨迹映射 缆绳-浮标-无人机组合体 双向长短期记忆 神经网络
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部