Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, t...Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, two sufficient conditions ensuring global stability of such networks are derived by utilizing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method.展开更多
In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By inge...In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By ingeniously importing real parameters di > 0 (i = 1,2, …, n) which can be adjusted, making use of the Lyapunov functional method and some analysis techniques, some new sufficient conditions are established. Our results generalize and improve the related results in [9]. These conditions can be used both to design globally exponentially stable and periodical oscillatory hybrid bidirectional associative neural networks with discrete delays, and to enlarge the area of designing neural networks. Our work has important significance in related theory and its application.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.69971018).
文摘Global asymptotic stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with continuously distributed delays is studied. Under two mild assumptions on the activation functions, two sufficient conditions ensuring global stability of such networks are derived by utilizing Lyapunov functional and some inequality analysis technique. The results here extend some previous results. A numerical example is given showing the validity of our method.
基金supported by the National Natural Science Foundation of P.R.China(60764003)the Major Project of The Ministry of Education of P.R.China and the Funded by Scientific Research Program of the HigherEducation Institution of Xinjiang(XJEDU2004I12 and XJEDU2006I05)
基金This work was supported by scientific research foundation of affairs concerning national living abroad office of the State Council.
文摘In this paper, we study the existence, uniqueness, and the global exponential stability of the periodic solution and equilibrium of hybrid bidirectional associative memory neural networks with discrete delays. By ingeniously importing real parameters di > 0 (i = 1,2, …, n) which can be adjusted, making use of the Lyapunov functional method and some analysis techniques, some new sufficient conditions are established. Our results generalize and improve the related results in [9]. These conditions can be used both to design globally exponentially stable and periodical oscillatory hybrid bidirectional associative neural networks with discrete delays, and to enlarge the area of designing neural networks. Our work has important significance in related theory and its application.