Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are ...Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are enhanced when the two circularly polarized lights have comparable intensities.In addition,the curves of ionization rate versus the field amplitude ratio of the two colors for counter-rotating and co-rotating fields coincide with each other in the length gauge case at the total laser intensity 5×10^14 W/cm^2,which agrees with the experimental observation.Moreover,the degree of the coincidence between the ionization rate curves of the two bicircular fields decreases with the increasing field amplitude ratio and decreasing total laser intensity.With the help of the ADK theory,the above characteristics of the ionization rate curves can be well interpreted,which is related to the transition from the tunneling to multiphoton ionization mechanism.展开更多
Stability for the notn-autonomous bicircular four-body model is analytically investigated in this study.The gowerning equation is derived from Newton's law of gravity.When the distance between the infnitesimal mas...Stability for the notn-autonomous bicircular four-body model is analytically investigated in this study.The gowerning equation is derived from Newton's law of gravity.When the distance between the infnitesimal mass and the third primary is expanded as Taylor expansions,the governing equation can be regarded 3 two parts:the unperturbed conservative system and the small periodically parametric excitations.The unperturbed system's natural frequency and paramettic frequency are analyzed for the posibility of principal parametric resonances.The method of multiple scales is applied directly to the governing equation.The stability conditions are obtained analytically for the principal pararmetric resonance.Numerical method demonstrates the efflciency of the analytical results.展开更多
Multiphoton resonant excitation and frustrated tunneling ionization,manifesting the photonic and optical nature of the driving light via direct excitation and electron recapture,respectively,are complementary mechanis...Multiphoton resonant excitation and frustrated tunneling ionization,manifesting the photonic and optical nature of the driving light via direct excitation and electron recapture,respectively,are complementary mechanisms to access Rydberg state excitation(RSE)of atoms and molecules in an intense laser field.However,clear identification and manipulation of their individual contributions in the light-induced RSE process remain experimentally challenging.Here,we bridge this gap by exploring the dissociative and nondissociative RSE of H2 molecules using bicircular two-color laser pulses.Depending on the relative field strength and polarization helicity of the two colors,the RSE probability can be boosted by more than one order of magnitude by exploiting the laser waveform-dependent field effect.The role of the photon effect is readily strengthened with increasing relative strength of the second-harmonic field of the two colors regardless of the polarization helicity.As compared to the nondissociative RSE forming H2,the field effect in producing the dissociative RSE channel of eHt;HT is moderately suppressed,which is primarily accessed via a three-step sequential process separated by molecular bond stretching.Our work paves the way toward a comprehensive understanding of the interplay of the underlying field and photon effects in the strong-field RSE process,as well as facilitating the generation of Rydberg states optimized with tailored characteristics.展开更多
We theoretically investigate the yield enhancement of elliptical high harmonics in the interaction of molecules with bicircular laser pulses by solving the time-dependent Schrodinger equation.It is shown that by adjus...We theoretically investigate the yield enhancement of elliptical high harmonics in the interaction of molecules with bicircular laser pulses by solving the time-dependent Schrodinger equation.It is shown that by adjusting the relative intensity ratio of the two bicircular field components in specific ranges the yield of the molecular high harmonics for the plateau and cutoff regions can be respectively enhanced.To analyze this enhancement phenomenon,we calculate the weights of the electron classical trajectories.Additionally,we also study the ellipticity distribution of harmonics for different intensity ratios.We find that these enhanced harmonics are elliptically polarized,which we mainly attribute to the recombination dipole moment of the major weighted trajectories.These enhanced elliptical extreme ultraviolet and soft x-ray radiations may serve as essential tools for exploring the ultrafast dynamics in magnetic materials and chiral media.展开更多
基金Project supported by the Key Laboratory Project of Computational Physics of National Defense Science and Technology of China(Grant No.6142A05180401)the National Key Program for S&T Research and Development of China(Grant Nos.2019YFA0307700 and 2016YFA0401100)the National Natural Science Foundation of China(Grant Nos.11847307,11425414,11504215,11774361,and 11874246).
文摘Ionization of atoms in counter-rotating and co-rotating bicircular laser fields is studied using the S-matrix theory in both length and velocity gauges.We show that for both the bicircular fields,ionization rates are enhanced when the two circularly polarized lights have comparable intensities.In addition,the curves of ionization rate versus the field amplitude ratio of the two colors for counter-rotating and co-rotating fields coincide with each other in the length gauge case at the total laser intensity 5×10^14 W/cm^2,which agrees with the experimental observation.Moreover,the degree of the coincidence between the ionization rate curves of the two bicircular fields decreases with the increasing field amplitude ratio and decreasing total laser intensity.With the help of the ADK theory,the above characteristics of the ionization rate curves can be well interpreted,which is related to the transition from the tunneling to multiphoton ionization mechanism.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China through Grant Nos.11402007,11772009,and 11672007.
文摘Stability for the notn-autonomous bicircular four-body model is analytically investigated in this study.The gowerning equation is derived from Newton's law of gravity.When the distance between the infnitesimal mass and the third primary is expanded as Taylor expansions,the governing equation can be regarded 3 two parts:the unperturbed conservative system and the small periodically parametric excitations.The unperturbed system's natural frequency and paramettic frequency are analyzed for the posibility of principal parametric resonances.The method of multiple scales is applied directly to the governing equation.The stability conditions are obtained analytically for the principal pararmetric resonance.Numerical method demonstrates the efflciency of the analytical results.
基金the National Key R&D Program of China(Grant No.2018YFA0306303)the National Natural Science Foundation of China(Grant Nos.11834004,61690224,92150105,11904103,12241407,and 12227807)the Science and Technology Commission of Shanghai Municipality(Grant No.21ZR1420100).
文摘Multiphoton resonant excitation and frustrated tunneling ionization,manifesting the photonic and optical nature of the driving light via direct excitation and electron recapture,respectively,are complementary mechanisms to access Rydberg state excitation(RSE)of atoms and molecules in an intense laser field.However,clear identification and manipulation of their individual contributions in the light-induced RSE process remain experimentally challenging.Here,we bridge this gap by exploring the dissociative and nondissociative RSE of H2 molecules using bicircular two-color laser pulses.Depending on the relative field strength and polarization helicity of the two colors,the RSE probability can be boosted by more than one order of magnitude by exploiting the laser waveform-dependent field effect.The role of the photon effect is readily strengthened with increasing relative strength of the second-harmonic field of the two colors regardless of the polarization helicity.As compared to the nondissociative RSE forming H2,the field effect in producing the dissociative RSE channel of eHt;HT is moderately suppressed,which is primarily accessed via a three-step sequential process separated by molecular bond stretching.Our work paves the way toward a comprehensive understanding of the interplay of the underlying field and photon effects in the strong-field RSE process,as well as facilitating the generation of Rydberg states optimized with tailored characteristics.
基金Project supported by the National Natural Science Foundation of China(Grant No.11904269)the Natural Science Foundation of Hubei Province,China(Grant Nos.2021CFB300 and 2020CFB362)Scientific Research Program of Hubei Provincial Department of Education(Grant No.B2020176)。
文摘We theoretically investigate the yield enhancement of elliptical high harmonics in the interaction of molecules with bicircular laser pulses by solving the time-dependent Schrodinger equation.It is shown that by adjusting the relative intensity ratio of the two bicircular field components in specific ranges the yield of the molecular high harmonics for the plateau and cutoff regions can be respectively enhanced.To analyze this enhancement phenomenon,we calculate the weights of the electron classical trajectories.Additionally,we also study the ellipticity distribution of harmonics for different intensity ratios.We find that these enhanced harmonics are elliptically polarized,which we mainly attribute to the recombination dipole moment of the major weighted trajectories.These enhanced elliptical extreme ultraviolet and soft x-ray radiations may serve as essential tools for exploring the ultrafast dynamics in magnetic materials and chiral media.