The exchange coupling at the ferromagnetic/antiferromagnetic (FM/AFM) interface is influenced by both the magnetic structure and the crystalline micro-structure. Co/FeMn/Co thin films with 0.4 nm Pt spacer layer ins...The exchange coupling at the ferromagnetic/antiferromagnetic (FM/AFM) interface is influenced by both the magnetic structure and the crystalline micro-structure. Co/FeMn/Co thin films with 0.4 nm Pt spacer layer inserted into the Co/FeMn and FeMn/Co interface respectively were deposited by means of magnetron sputtering. The two interfaces upon and beneath the FeMn layer show distinct behaviors before and after the Pt spacer inserted. There is a remarkable shrink of the interracial uncompensated spins within the FeMn bottom interracial monolayers, whereas a relaxation of the pinning strength of the FeMn interfacial spins along the out-of-plane direction occurs at the top in- terface. XRD analysis indicates the Pt layer upon the FeMn layer forms an fcc (002) texture, implying the magnetic discrepancy between the top and bottom FeMn interfaces has crystalline structural origins.展开更多
This study deals with electrical instability under bias stress in pentacene-based transistors with gate dielectrics deposited by a lamination process. Mylar film is laminated onto a polyethylene terephthalate (PET) su...This study deals with electrical instability under bias stress in pentacene-based transistors with gate dielectrics deposited by a lamination process. Mylar film is laminated onto a polyethylene terephthalate (PET) substrate, on which aluminum (Al) gate is deposited, followed by evaporation of organic semiconductor and gold (Au) source/drain contacts in bottom gate top contact configuration (Device 1). In order to compare the influence of the semiconductor/dielectric interface, a second organic transistor (Device 2) which is different from the Device 1 by the deposition of an intermediate layer of polymethyl methacrylate (PMMA) onto the laminated Mylar dielectric and before evaporating pentacene layer is fabricated. The critical device parameters such as threshold voltage (V<sub>T</sub>), subthreshold slope (S), mobility (μ), onset voltage (V<sub>on</sub>) and I<sub>on</sub>/I<sub>off</sub> ratio have been studied. The results showed that the recorded hysteresis depend on the pentacene morphology. Moreover, after bias stress application, the electrical parameters are highly modified for both devices according to the regimes in which the transistors are operating. In ON state regime, Device 1 showed a pronounced threshold voltage shift associated to charge trapping, while keeping the μ, I<sub>off</sub> current and S minimally affected. Regardless of whether Device 2 exhibited better electrical performances and stability in ON state, we observed a bias stress-induced increase of depletion current and subthreshold slope in subthreshold region, a sign of defect creation. Both devices showed onset voltage shift in opposite direction.展开更多
Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content o...Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.展开更多
The influence of longitudinal and torsional bias stresses on anomalous amplitude-dependent internal friction was studied.The longitudinal bias stress may always weaken the anomalous amplitude-dependent effect,while th...The influence of longitudinal and torsional bias stresses on anomalous amplitude-dependent internal friction was studied.The longitudinal bias stress may always weaken the anomalous amplitude-dependent effect,while the torsional one may induce different effects from differ- ent directions applied.Bias stress effect exhibits only in properly heat treated and cold worked ahoy specimens.The anomalous amplitude-dependent internal friction peaks,P_3,P_2 and P_1, are found to be related closely to slant dislocation kink chains.Thus,the application of bias stress to internal friction would be contributed to the study on dislocation structure.展开更多
A sample of 65 older adults (with and without diabetes) as well as a sample of 84 healthy young people were required to take affective priming studies to compare recognition latencies of stress related word pairs agai...A sample of 65 older adults (with and without diabetes) as well as a sample of 84 healthy young people were required to take affective priming studies to compare recognition latencies of stress related word pairs against recognition latencies of positive, negative and neutral word pairs. Moreover, older adults took a stress questionnaire related to relevant disturbing events in the third age. The goal was to test any automatic emotional processing bias to these events. Results suggested that even when people with diabetes obtained low stress test scores, they showed automatic cognitive bias to process stressful events differently than older adults without diabetes and young people. This suggested that people with diabetes patients’ controlled strategies to cope with stress might not be aware of such an automatic cognitive bias. It is argued that this information processing style to stressful events makes patients prone to cognitive emotional vulnerability.展开更多
Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For...Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For negative bias stress, the breakdown time distribution (β) decreases with the increasing negative gate voltage, while β is larger for higher drain voltage at off-state stress. Two humps in the time-dependent gate leakage occurred under both breakdown conditions, which can be ascribed to the dielectric breakdown triggered earlier and followed by the GaN layer breakdown. Combining the electric distribution from simulation and long-term monitoring of electric parameter, the peak electric fields under the gate edges at source and drain sides are confirmed as the main formation locations for per-location paths during negative gate voltage stress and off-state stress, respectively.展开更多
基金supported by the National Natural Science Foundation of China(Nos.50871014,50831002,50971021,50901007,and 2102014)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(No.PHR201007122)the New Teachers Foundation of the Ministry of Education of China(No.200800081030)
文摘The exchange coupling at the ferromagnetic/antiferromagnetic (FM/AFM) interface is influenced by both the magnetic structure and the crystalline micro-structure. Co/FeMn/Co thin films with 0.4 nm Pt spacer layer inserted into the Co/FeMn and FeMn/Co interface respectively were deposited by means of magnetron sputtering. The two interfaces upon and beneath the FeMn layer show distinct behaviors before and after the Pt spacer inserted. There is a remarkable shrink of the interracial uncompensated spins within the FeMn bottom interracial monolayers, whereas a relaxation of the pinning strength of the FeMn interfacial spins along the out-of-plane direction occurs at the top in- terface. XRD analysis indicates the Pt layer upon the FeMn layer forms an fcc (002) texture, implying the magnetic discrepancy between the top and bottom FeMn interfaces has crystalline structural origins.
文摘This study deals with electrical instability under bias stress in pentacene-based transistors with gate dielectrics deposited by a lamination process. Mylar film is laminated onto a polyethylene terephthalate (PET) substrate, on which aluminum (Al) gate is deposited, followed by evaporation of organic semiconductor and gold (Au) source/drain contacts in bottom gate top contact configuration (Device 1). In order to compare the influence of the semiconductor/dielectric interface, a second organic transistor (Device 2) which is different from the Device 1 by the deposition of an intermediate layer of polymethyl methacrylate (PMMA) onto the laminated Mylar dielectric and before evaporating pentacene layer is fabricated. The critical device parameters such as threshold voltage (V<sub>T</sub>), subthreshold slope (S), mobility (μ), onset voltage (V<sub>on</sub>) and I<sub>on</sub>/I<sub>off</sub> ratio have been studied. The results showed that the recorded hysteresis depend on the pentacene morphology. Moreover, after bias stress application, the electrical parameters are highly modified for both devices according to the regimes in which the transistors are operating. In ON state regime, Device 1 showed a pronounced threshold voltage shift associated to charge trapping, while keeping the μ, I<sub>off</sub> current and S minimally affected. Regardless of whether Device 2 exhibited better electrical performances and stability in ON state, we observed a bias stress-induced increase of depletion current and subthreshold slope in subthreshold region, a sign of defect creation. Both devices showed onset voltage shift in opposite direction.
基金supported by the National Natural Science Foundation of China(Grant Nos.61076113 and 61274085)the Natural Science Foundation of Guangdong Province(Grant No.2016A030313474)the University Development Fund(Nanotechnology Research Institute,Grant No.00600009)of the University of Hong Kong,China
文摘Si-doped zinc oxide(SZO) thin films are deposited by using a co-sputtering method,and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures.The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated.Moreover,the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure.The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm,and the optical band gap of the SZO film gradually increases with increasing Si content.The Si-doping can effectively suppress the grain growth of ZnO,revealed by atomic force microscope analysis.Compared with that of the undoped ZnO TFT,the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10^-12 A,and thus the on/off current ratio is increased by more than two orders of magnitude.In summary,the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 10^6 and superior stability under gate-bias and drain-bias stress.
文摘The influence of longitudinal and torsional bias stresses on anomalous amplitude-dependent internal friction was studied.The longitudinal bias stress may always weaken the anomalous amplitude-dependent effect,while the torsional one may induce different effects from differ- ent directions applied.Bias stress effect exhibits only in properly heat treated and cold worked ahoy specimens.The anomalous amplitude-dependent internal friction peaks,P_3,P_2 and P_1, are found to be related closely to slant dislocation kink chains.Thus,the application of bias stress to internal friction would be contributed to the study on dislocation structure.
文摘A sample of 65 older adults (with and without diabetes) as well as a sample of 84 healthy young people were required to take affective priming studies to compare recognition latencies of stress related word pairs against recognition latencies of positive, negative and neutral word pairs. Moreover, older adults took a stress questionnaire related to relevant disturbing events in the third age. The goal was to test any automatic emotional processing bias to these events. Results suggested that even when people with diabetes obtained low stress test scores, they showed automatic cognitive bias to process stressful events differently than older adults without diabetes and young people. This suggested that people with diabetes patients’ controlled strategies to cope with stress might not be aware of such an automatic cognitive bias. It is argued that this information processing style to stressful events makes patients prone to cognitive emotional vulnerability.
基金Project supported by the National Key Research and Development Program,China(Grant No.2017YFB0402800)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2019B010128002 and 2020B010173001)+4 种基金the National Natural Science Foundation of China(Grant No.U1601210)the Natural Science Foundation of Guangdong Province,China(Grant No.2015A030312011)the Open Project of Key Laboratory of Microelectronic Devices and Integrated Technology(Grant No.202006)the Science and Technology Plan of Guangdong Province,China(Grant No.2017B010112002)the China Postdoctoral Science Foundation(Grant No.2019M663233).
文摘Stress voltages on time-dependent breakdown characteristics of GaN MIS-HEMTs during negative gate bias stress (with VGS < 0, VD = VS = 0) and off-state stress (VG < VTh, VDS > 0, VS = 0) are investigated. For negative bias stress, the breakdown time distribution (β) decreases with the increasing negative gate voltage, while β is larger for higher drain voltage at off-state stress. Two humps in the time-dependent gate leakage occurred under both breakdown conditions, which can be ascribed to the dielectric breakdown triggered earlier and followed by the GaN layer breakdown. Combining the electric distribution from simulation and long-term monitoring of electric parameter, the peak electric fields under the gate edges at source and drain sides are confirmed as the main formation locations for per-location paths during negative gate voltage stress and off-state stress, respectively.