实现城市对外客运枢纽抵站客流的精准预测,是增强枢纽接续运输运力调度科学性的重要前提。为提高枢纽抵站客流的预测精度,研究了基于超参数优化的鲸鱼算法与双向长短期记忆神经网络模型(whale optimization algorithm and bi-directiona...实现城市对外客运枢纽抵站客流的精准预测,是增强枢纽接续运输运力调度科学性的重要前提。为提高枢纽抵站客流的预测精度,研究了基于超参数优化的鲸鱼算法与双向长短期记忆神经网络模型(whale optimization algorithm and bi-directional long short-term memory,WOA-Bi-LSTM)组合的客流预测方法。融合历史抵站客流数据及天气、日期、时段等多源信息,分析抵站客流的时变特性,并开展不同影响因素与枢纽抵站客流量间的相关性分析。改进了传统双向长短期记忆神经网络模型(bi-directional long short-term memory,Bi-LSTM)的参数设置方法,用鲸鱼算法(whale optimization algorithm,WOA)代替手动调参,选取学习效率(η)与隐藏神经元个数(H)2个对模型预测精度具有较大影响的超参数进行最优超参数组合搜寻,通过计算其适应度函数进行循环逻辑判断,实现参数自适应优化。通过不断寻优,获取最优参数组合值,确定设置η为0.0603、H为120,并输出预测结果和3个模型精度评价指标(R^(2)判定系数,平均绝对误差与均方根误差);同时构建了3种不同超参数优化算法改进的Bi-LSTM组合模型、2种基于WOA算法改进的其他组合模型,以及2种未改进的神经网络模型与WOA-Bi-LSTM模型使用相同的抵站客流数据集进行多维度对比,验证所建模型的优越性与鲁棒性。结果表明:WOA-Bi-LSTM模型在节假日、工作日与非工作日等不同枢纽抵站客流预测场景下均体现出良好的适用性,与其他模型相比,R2相关系数最大,达到0.9514,表示所建模型的拟合效果最好;平均绝对误差与均方根误差最小,分别为762.96与556.25,误差相较于其他模型至少减少5.6%和3.2%。展开更多
针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题,提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network,AT-CNN-...针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题,提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network,AT-CNN-BiLSTM)融合的信道预测方法。该方法由信号预处理、网络训练和信号预测3部分组成。首先在高斯白噪声条件下模拟室外卫星信号,得到卫星信号的训练集和测试集;然后将训练集输入构建的训练网络进行特征提取;最后将测试数据输入网络进行预测分析。仿真结果表明,在与其他4种人工智能方法的对比中,所提出的混合神经网络能够在较快的收敛速度下达到较高的准确率(91.8%),有效地缓解了低轨道卫星信道参数“过时”的现状,对提升卫星通信质量和节省卫星信道资源有良好的改善作用。展开更多
针对水电机组振动信号存在非平稳和非线性,提出一种结合IMF能量矩和双向长短期记忆神经网络(bidirection long short term memory neural network,BiLSTMNN)的故障诊断方法。首先采用互补集合经验模态分解(complementary ensemble empir...针对水电机组振动信号存在非平稳和非线性,提出一种结合IMF能量矩和双向长短期记忆神经网络(bidirection long short term memory neural network,BiLSTMNN)的故障诊断方法。首先采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法对正常和故障振动信号样本进行处理,得到频率各异的本征模态函数(intrinsic mode functions,IMF)和剩余分量。然后计算IMF能量矩,并将其作为故障特征。进一步,将故障特征作为输入、故障类别作为输出,训练BiLSTMNN得到水电机组故障识别器。结合故障识别器和实时振动信号IMF能量矩特征,即可识别水电机组运行状态为正常或具体故障类型。最后,结合转子实验台数据和实际电站机组样本数据,设计对比实验,验证了所提方法在挖掘信号特征方面的有效性及较高的故障诊断准确率。展开更多
针对现有恶意域名检测方法对新出现的恶意域名检测精度不高的问题,提出一种双层注意力CNN-BiLSTM的恶意域名检测算法。首先,利用卷积神经网络(Convolutional Neural Networks,CNN)和字符注意力编码块,提取域名在字符层的全局深度语义特...针对现有恶意域名检测方法对新出现的恶意域名检测精度不高的问题,提出一种双层注意力CNN-BiLSTM的恶意域名检测算法。首先,利用卷积神经网络(Convolutional Neural Networks,CNN)和字符注意力编码块,提取域名在字符层的全局深度语义特征;然后,利用双向长短期记忆神经网络(Bi-Directional Long Short Term Memory,BiLSTM)和字节注意力编码块,细粒度的提取字节层的局部语义特征;最后,利用训练的分类器进行合法域名与恶意域名的分类。通过在多个家族恶意域名数据集上进行测试,结果表明,相比当前主流的恶意域名检测模型,文中模型在合法域名与恶意域名的二分类任务中优势显然;在更具挑战性的家族恶意域名检测的多分类任务中同样表现良好。展开更多
为了提高短期电价预测的精度,提出了1种基于二次分解特征矩阵、并行卷积神经网络(Parallel convolutional neural network,PCNN)、双向长短期记忆神经网络(Bi-directional long short term memory,BiLSTM)的预测方法。采用完全集合经验...为了提高短期电价预测的精度,提出了1种基于二次分解特征矩阵、并行卷积神经网络(Parallel convolutional neural network,PCNN)、双向长短期记忆神经网络(Bi-directional long short term memory,BiLSTM)的预测方法。采用完全集合经验模态分解将归一化后的原始电价/负荷数据分解为一系列分量,用变分模态分解将第1次分解产生的最高频分量进一步分解成一系列模态分量;用第1次和第2次分解产生的所有分量构造2通道输入特征矩阵;利用PCNN提取各种特征,再将特征融合后输入到BiLSTM预测结构中,最终得出翌日预测值。预测结果表明,所提出的预测方法有效提高了短期电价的预测精度。展开更多
针对高速公路短时交通流预测问题,从数据驱动视角出发提出考虑注意力机制的双向长短时记忆神经网络(Attention Bi-directional Long Short-Term Memory,Att-Bi-LSTM)高速公路短时交通流预测模型。首先,从实际的高速公路运营线路中获取...针对高速公路短时交通流预测问题,从数据驱动视角出发提出考虑注意力机制的双向长短时记忆神经网络(Attention Bi-directional Long Short-Term Memory,Att-Bi-LSTM)高速公路短时交通流预测模型。首先,从实际的高速公路运营线路中获取样本数据并进行相应的预处理;其次,采用滑动窗口模型进行数据重采样,并基于重采样后的样本数据构建Att-Bi-LSTM高速公路短时交通流预测模型;最后,为验证所构建模型的准确性,依托京台高速泰安收费站断面的交通流数据进行实例应用,并将其预测结果与LSTM、BP、SVR算法的预测结果进行对比。结果表明:所构建的Att-Bi-LSTM预测模型预测精度较高、模型泛化能力强,可为高速公路短时交通流预测提供一种新的思路。展开更多
文摘实现城市对外客运枢纽抵站客流的精准预测,是增强枢纽接续运输运力调度科学性的重要前提。为提高枢纽抵站客流的预测精度,研究了基于超参数优化的鲸鱼算法与双向长短期记忆神经网络模型(whale optimization algorithm and bi-directional long short-term memory,WOA-Bi-LSTM)组合的客流预测方法。融合历史抵站客流数据及天气、日期、时段等多源信息,分析抵站客流的时变特性,并开展不同影响因素与枢纽抵站客流量间的相关性分析。改进了传统双向长短期记忆神经网络模型(bi-directional long short-term memory,Bi-LSTM)的参数设置方法,用鲸鱼算法(whale optimization algorithm,WOA)代替手动调参,选取学习效率(η)与隐藏神经元个数(H)2个对模型预测精度具有较大影响的超参数进行最优超参数组合搜寻,通过计算其适应度函数进行循环逻辑判断,实现参数自适应优化。通过不断寻优,获取最优参数组合值,确定设置η为0.0603、H为120,并输出预测结果和3个模型精度评价指标(R^(2)判定系数,平均绝对误差与均方根误差);同时构建了3种不同超参数优化算法改进的Bi-LSTM组合模型、2种基于WOA算法改进的其他组合模型,以及2种未改进的神经网络模型与WOA-Bi-LSTM模型使用相同的抵站客流数据集进行多维度对比,验证所建模型的优越性与鲁棒性。结果表明:WOA-Bi-LSTM模型在节假日、工作日与非工作日等不同枢纽抵站客流预测场景下均体现出良好的适用性,与其他模型相比,R2相关系数最大,达到0.9514,表示所建模型的拟合效果最好;平均绝对误差与均方根误差最小,分别为762.96与556.25,误差相较于其他模型至少减少5.6%和3.2%。
文摘针对低轨道卫星信道质量变化迅速、信道参数“过时”的问题,提出了一种基于注意力机制的卷积神经和双向长短时记忆神经网络(attention-convolutional neural network and bi-directional long-short term memory neural network,AT-CNN-BiLSTM)融合的信道预测方法。该方法由信号预处理、网络训练和信号预测3部分组成。首先在高斯白噪声条件下模拟室外卫星信号,得到卫星信号的训练集和测试集;然后将训练集输入构建的训练网络进行特征提取;最后将测试数据输入网络进行预测分析。仿真结果表明,在与其他4种人工智能方法的对比中,所提出的混合神经网络能够在较快的收敛速度下达到较高的准确率(91.8%),有效地缓解了低轨道卫星信道参数“过时”的现状,对提升卫星通信质量和节省卫星信道资源有良好的改善作用。
文摘针对水电机组振动信号存在非平稳和非线性,提出一种结合IMF能量矩和双向长短期记忆神经网络(bidirection long short term memory neural network,BiLSTMNN)的故障诊断方法。首先采用互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)方法对正常和故障振动信号样本进行处理,得到频率各异的本征模态函数(intrinsic mode functions,IMF)和剩余分量。然后计算IMF能量矩,并将其作为故障特征。进一步,将故障特征作为输入、故障类别作为输出,训练BiLSTMNN得到水电机组故障识别器。结合故障识别器和实时振动信号IMF能量矩特征,即可识别水电机组运行状态为正常或具体故障类型。最后,结合转子实验台数据和实际电站机组样本数据,设计对比实验,验证了所提方法在挖掘信号特征方面的有效性及较高的故障诊断准确率。
文摘针对现有恶意域名检测方法对新出现的恶意域名检测精度不高的问题,提出一种双层注意力CNN-BiLSTM的恶意域名检测算法。首先,利用卷积神经网络(Convolutional Neural Networks,CNN)和字符注意力编码块,提取域名在字符层的全局深度语义特征;然后,利用双向长短期记忆神经网络(Bi-Directional Long Short Term Memory,BiLSTM)和字节注意力编码块,细粒度的提取字节层的局部语义特征;最后,利用训练的分类器进行合法域名与恶意域名的分类。通过在多个家族恶意域名数据集上进行测试,结果表明,相比当前主流的恶意域名检测模型,文中模型在合法域名与恶意域名的二分类任务中优势显然;在更具挑战性的家族恶意域名检测的多分类任务中同样表现良好。
文摘为了提高短期电价预测的精度,提出了1种基于二次分解特征矩阵、并行卷积神经网络(Parallel convolutional neural network,PCNN)、双向长短期记忆神经网络(Bi-directional long short term memory,BiLSTM)的预测方法。采用完全集合经验模态分解将归一化后的原始电价/负荷数据分解为一系列分量,用变分模态分解将第1次分解产生的最高频分量进一步分解成一系列模态分量;用第1次和第2次分解产生的所有分量构造2通道输入特征矩阵;利用PCNN提取各种特征,再将特征融合后输入到BiLSTM预测结构中,最终得出翌日预测值。预测结果表明,所提出的预测方法有效提高了短期电价的预测精度。
文摘针对高速公路短时交通流预测问题,从数据驱动视角出发提出考虑注意力机制的双向长短时记忆神经网络(Attention Bi-directional Long Short-Term Memory,Att-Bi-LSTM)高速公路短时交通流预测模型。首先,从实际的高速公路运营线路中获取样本数据并进行相应的预处理;其次,采用滑动窗口模型进行数据重采样,并基于重采样后的样本数据构建Att-Bi-LSTM高速公路短时交通流预测模型;最后,为验证所构建模型的准确性,依托京台高速泰安收费站断面的交通流数据进行实例应用,并将其预测结果与LSTM、BP、SVR算法的预测结果进行对比。结果表明:所构建的Att-Bi-LSTM预测模型预测精度较高、模型泛化能力强,可为高速公路短时交通流预测提供一种新的思路。
基金supported by the National Key Research and Development Program of China(2016YFC0600201)the Academic and Technical Leader Training Program of Jiangxi Province(20204BCJ23027)+1 种基金the Joint Innovation Fund of State Key Laboratory of Nuclear Resources and Environment(2022NRELH-18)the Funds for Guiding Local Scientifc and Technological Development by the Central Government(206Z1705G).
文摘产气量是评估天然气井生产能力和开发工艺效果的重要指标。准确的预测产气量是保证高效生产的关键。为了准确预测储层产气量,本文提出了一种基于鲸鱼优化算法(whale optimization algorithm,WOA)、注意机制(attention mechanism,AM)和双向长短时记忆(bi-directional long short-term memory,BiLSTM)相结合的日产气量预测模型。首先,以Volve油田的排采数据为研究对象,分析了产气量与这些排采参数之间的相关性,并利用LightGBM算法进行重要性排序;然后使用有较强非线性处理能力的基于注意力机制的双向长短时记忆神经网络(bi-directional long short-term memory based on attention mechanism,AM-BiLSTM)构建日产气量预测模型;最后通过鲸鱼算法对AM-BiLSTM模型中的相关参数进行优化,并将参数优化后的模型(WOA-AMBiLSTM)应用于Volve油田的A井。实验结果表明,WOA-AMBiLSTM模型的综合预测性能优于传统的反馈神经网络模型(the back-propagation neural network model,BP)和其他提出的深度学习模型(LSTM、BiLSTM和AM-BiLSTM)。WOA-AM-BiLSTM模型预测曲线与实测测井曲线更加接近,具有更好的预测表现,为储层产能预测提供了一种新思路。