AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method b...AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method by using abundant double-stranded cDNA messages provided by two self-constructed cDNA libraries (Allitridi-treated and paternal HGC cell line BGC823 cells cDNA libraries respectively). Bam H I and Xho I restriction sites harbored in the library vector were used to select representations. Northern and Slot blots analyses were employed to identify the obtained difference products. RESULTS: Fragments released from the cDNA library vector after restriction endonuclease digestion acted as good marker indicating the appropriate digestion degree for library DNA. Two novel expressed sequence tags (ESTs) and a recombinant gene were obtained. Slot blots result showed a 8-fold increase of glia-derived nexin/protease nexin 1 (GDN/PN1) gene expression level and 4-fold increase of hepatitis B virus x-interacting protein (XIP) mRNA level in BGC823 cells after Allitridi treatment for 72h. CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAs induced by Allitridi provide valuable molecular evidence for elucidating the garlic's efficacies against neurodegenerative and inflammatory diseases. Isolation of a recombinant gene and two novel ESTs further show cDNA RDA based on cDNA libraries to be a powerful method with high specificity and reproducibility in cloning differentially expressed genes.展开更多
Background Alzheimer disease (AD) is a neurodegenerative disease related to aging. At present, its pathological mechanisms remain unclear. Family members of the renin-angiotensin system (RAS) play a role in neuron...Background Alzheimer disease (AD) is a neurodegenerative disease related to aging. At present, its pathological mechanisms remain unclear. Family members of the renin-angiotensin system (RAS) play a role in neuronal plasticity, as well as formation of learning and memory. In this study, we explore the effects of altered angiotensin-converting enzyme (ACE), and investigate the possible mechanisms of perindopril, an ACE inhibitor, on brain structure and function in a rat model of AD, as well as the role that ACE plays in AD. Methods Sixty Sprague-Dawley rats were selected and randomly divided into 3 groups: control, AD, and perindopril. Each group consisted of 20 rats, with 10 rats for determining pathology, and the remaining 10 rats for quantifying ACE activity. The rat AD model was established by stereotactically injecting amyloid beta protein (A-beta) 1-42 into the right hippocampus. Learning and memory functions were tested using the Y-type electric maze. The number and morphology of abnormal neurons were determined by haematoxylin and eosin staining. Amyloid deposition was measured by Congo red staining. Finally, ACE activity was estimated by spectrophotometry. Results Compared with the control group, the number of times needed to escape electrical stimuli increased (23.70±3.13, P 〈0.001), the number of normal neurons in the CA1 region was reduced (density of 96.5±32.6/mm, P 〈0.001), amyloid deposition was obvious, and ACE activity increased ((34.4±6.6) nmol.g-1.min-1, P 〈0.001) in the AD group. In the perindopril group, the number of times needed to escape electrical stimuli decreased (18.50±3.66, P 〈0.001), the number of abnormal neurons increased (density of CA1 neurons was 180.8±28.5/mm, P 〈0.001), amyloid deposition was reduced, and ACE activity was down-regulated ((26.2±6.2) nmol.g-1.min-1, P 〈0.001). Conclusions ACE activity increased in the brains of AD rats. Perindopril improved learning and memory in AD rats, which correlated with de展开更多
OBJECTIVE:To discuss the influence of Sailuotong(塞络通,SLT)on the Neurovascular Unit(NVUs)of amyloid precursor protein(APP)/presenilin-1(PS1)mice and evaluate the role of gas supplementation in activating blood circu...OBJECTIVE:To discuss the influence of Sailuotong(塞络通,SLT)on the Neurovascular Unit(NVUs)of amyloid precursor protein(APP)/presenilin-1(PS1)mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease(AD).METHODS:The mice were allocated into the following nine groups:(a)the C57 Black(C57BL)sham-operated group(control group),(b)ischaemic treatment in C57BL mice(the C57 ischaemic group),(c)the APP/PS1 sham surgery group(APP/PS1 model group),(d)ischaemic treatment in APP/PS1 mice(APP/PS1 ischaemic group),(e)C57BL mice treated with aspirin following ischaemic treatment(C57BL ischaemic+aspirin group),(f)C57BL mice treated with SLT following ischaemic treatment(C57BL ischaemic+SLT group),(g)APP/PS1 mice treated with SLT(APP/PS1+SLT group),(h)APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment(APP/PS1 ischaemic+donepezil hydrochloride group)and(i)APP/PS1 mice treated with SLT following ischaemic treatment(APP/PS1 ischaemic+SLT group).The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism.The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice.The hippocampus of each mouse was observed by haematoxylin and eosin(HE)and Congo red staining.The ultrastructure of NVUs in each group was observed by electron microscopy,and various biochemical indicators were detected by enzymelinked immunosorbent assay(ELISA).The protein expression level was detected by Western blot.The mRNA expression was detected by quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS:The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice,which were restored by SLT.The results of HE staining showed that SLT restored the pathological changes of the NVUs.The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex a展开更多
Keratins and corneous proteins are key components of biomaterials used in a wide range of applications and are potential substitutes for petrochemical-based products. Horns, hooves, feathers, claws, and similar animal...Keratins and corneous proteins are key components of biomaterials used in a wide range of applications and are potential substitutes for petrochemical-based products. Horns, hooves, feathers, claws, and similar animal tissues are abundant sources of α-keratin and corneous β-proteins, which are by-products of the food industry. Their close association with the meat industry raises environmental and ethical concerns regarding their disposal. To promote an eco-friendly and circular use of these materials in novel applications, efforts have focused on recovering these residues to develop sustainable, non-animal-related, affordable, and scalable procedures. Here, we review and examine biotechnological methods for extracting and expressing α-keratins and corneous β-proteins in microorganisms. This review highlights consolidated research trends in biomaterials, medical devices, food supplements, and packaging, demonstrating the keratin industry's potential to create innovative value-added products. Additionally, it analyzes the state of the art of related intellectual property and market size to underscore the potential within a circular bioeconomic model.展开更多
Repetitive transcranial magnetic stimulation (rTMS) has been utilized as a therapeutic tool for neurodegenerative disorders including Alzheimer's disease. However, the precise mechanisms of its clinical effects rem...Repetitive transcranial magnetic stimulation (rTMS) has been utilized as a therapeutic tool for neurodegenerative disorders including Alzheimer's disease. However, the precise mechanisms of its clinical effects remain unknown. β-amyloid (Aβ) exhibits direct neurotoxic effects and is closely related to neuronal degeneration in Alzheimer's disease. Therefore, it has been hypothesized that the neuroprotective effects of rTMS are related to the mechanisms of protection against Aβ neurotoxicity. Organotypic hippocampal slices were prepared from 8-day old, Sprague Dawley rats. The tissue slices were exposed to 100 μmol/L Al3142 since day 12 in vitro with and without high-frequency (20 Hz) magnetic stimulation. Magnetic stimulation efficacy was evaluated by measuring neuronal nuclei (NeuN) protein expression and by observing cultures following propidium iodide fluorescence staining and bromodeoxyuridine (BrdU) immunohistochemistry. Lactate dehydrogenase activity was detected in the culture media to evaluate hippocampal neuronal damage. Our results demonstrated that high-frequency magnetic stimulation significantly reversed the reduction of NeuN protein expression because of Aβ1-42 exposure (P 〈 0.05) and significantly reduced the number of damaged cells in the hippocampal slices (P 〈 0.05). However, lactate dehydrogenase levels and anti-BrdU staining results did not reveal any statistical differences These findings indicate that high-frequency magnetic stimulation might have protective effect on hippocampal neurons from Aβ1-42 neurotoxicity.展开更多
BACKGROUND: The findings about the alterations in cerebrospinal fluid beta-amyloid protein (Aβ ) and apolipoprotein E (APOE) after subarachnoid hemorrhage indicate that they have significant correlation with pro...BACKGROUND: The findings about the alterations in cerebrospinal fluid beta-amyloid protein (Aβ ) and apolipoprotein E (APOE) after subarachnoid hemorrhage indicate that they have significant correlation with prognosis of patients. OBJECTⅣE: To observe the alterations in cerebrospinal fluid Aβ and ApoE after subarachnoid hemorrhage (SAH). DESIGN: Contrast observation. SETTING: Department of Neurosurgery, the First Hospital of Lanzhou University. PARTICIPANTS: A total of 25 SAH patients including 16 males and 9 females aged from 13 to 72 years were selected form Department of Neurosurgery, the First Affiliated Hospital of Lanzhou University from October 2003 to February 2004. The Hunt-Hess grade ranged from Ⅰ to Ⅳ, and patients admitted hospital in 24 hours after invasion, affirmed by the brain CT scan and lumbar vertebra puncture, no other severe complications and important organs' functional defect and severe infection, no hematological system disease. METHODS- All admitted patients were collected CSF by lumbar vertebra puncture in 24 hours. The cerebrospinal fluid (CSF) of control group came from the admitted 15 patients of our hospital that have no nervous system disease. Aβ content was detected by enzyme linked immunosorbent assay (ELISA), the kit was provided by the Central Laboratory of the First Hospital of Lanzhou University; ApoE concentration was detected by monoclone enzyme linked immunosorbent assay (ELISA), the kit was provided by the Immunotechnique Research Institute of the Fourth Military Medical University. S100B concentration was detected by enzyme linked immunosorbent assay double antibody sandwich method, the kit was provided by the Physiological Research Room of the Fourth Military Medical University. The data were indicated on Mean±SD and were analyzed by SPSS 10.0 statistical package. All data were handled through test of significance variance analysis, and groups were compared through independent sampler t test. The concentration was handled thr展开更多
Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro- liferation activity effects induced these cells by Amyloid beta-Protein (Aβ-43). Methods: 1) PC12 cells in...Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro- liferation activity effects induced these cells by Amyloid beta-Protein (Aβ-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC12 cells in logarithmic growth phase were divided into four groups: control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 °C in an incubator for 72 h, the OD values were examined. Results: 1) Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ (1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0?5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in- fluence of Aβ on induced proliferation of PC12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD evolution.展开更多
Objective: To investigate the effects of lithium on cognitive function and metabolism of Amyloid-beta Protein Precursor (APP) and tau phosphorylation in rats chronically exposed to aluminum. Methods: Twenty-four chron...Objective: To investigate the effects of lithium on cognitive function and metabolism of Amyloid-beta Protein Precursor (APP) and tau phosphorylation in rats chronically exposed to aluminum. Methods: Twenty-four chronically aluminum-exposed rats were randomly divided into 2 groups: a lithium-treatment group and a non-treatment group (n=12 per group). Lithium chloride was administered to the lithium-treatment group via gastric gavage daily for 6 weeks (200 mg/kg·d LiCl), while the non-treatment group was administered the same volume of sodium chloride by the same means. An additional control group (n=12) received no intervention. Memory function was evaluated by the Morris water maze test. Aβ was measured by immunohistochemical staining, while total APP, phosphorylated-tau protein, CDK5 and PP2A were determined by Western Blotting. Results: (1) Compared to the non-treatment group, the lithium-treatment group had a significantly shorter mean escape latency and a lower proportion of random navigation pattern in the spatial probe test (P<0.05). After the platform was taken away, the rats in the lithium-treatment group crossed the platform quadrant significantly more and stayed longer in the platform quadrant than those in the non-treatment group (P<0.05). (2) The number of Aβ positive neurons in the hippocampus and cortex was significantly less in the lithium-treatment group than in the non-treatment group (P<0.05), but the content of APP was not different between groups (P=0.730). (3) Phosphorylation of tau protein decreased significantly in the lithium-treatment group than that in the non-treatment group (P<0.05). The content of CDK5 in the lithium-treatment group was significantly less than that in the non-treatment group in the cortex and hippocampus, while there was no difference in the content of PP2A between the 2 groups. The expression of CDK5 was significantly correlated with phosphorylated tau (r=0.871, P=0.024) in the lithium-treatment group. Conclusion: Lithium may improve memory function in rats chron展开更多
目的研究阿魏酸钠(sod ium feru late)对抗Aβ25-35致大鼠学习记忆障碍与白介素-1β(IL-1β)和丝裂原激活的蛋白激酶p38(M itogen-activated prote in k inase,p38MAPK)表达的相关性。方法大鼠脑室内一次性注射Aβ25-35制备AD动物模型,...目的研究阿魏酸钠(sod ium feru late)对抗Aβ25-35致大鼠学习记忆障碍与白介素-1β(IL-1β)和丝裂原激活的蛋白激酶p38(M itogen-activated prote in k inase,p38MAPK)表达的相关性。方法大鼠脑室内一次性注射Aβ25-35制备AD动物模型,通过大鼠行为学和海马CA1区的病理学改变观察阿魏酸钠的作用。W estern b lot和ELISA方法检测磷酸化p38MAPK和IL-1β蛋白表达量的变化。RT-PCR分析FasLmRNA表达水平。结果脑室内注射Aβ25-35可使大鼠出现明显的学习记忆障碍,即逃避潜伏期明显延长,原平台象限游泳时间占总游泳时间百分比明显降低。这些行为学的改变伴随有海马CA1区星形胶质细胞激活和浸润,IL-1β蛋白表达和FasL mRNA表达水平明显增加,海马CA1区锥体神经元损伤。另外,Aβ25-35也能引起磷酸化的p38MAPK蛋白表达明显增加。阿魏酸钠(50,100,250 mg.kg-1,连续应用4 wk)与阳性对照药布洛芬(15 mg.kg-1)均能明显对抗Aβ25-35所致大鼠学习记忆障碍,抑制Aβ25-35引起的IL-1β、磷酸化p38MAPK和FasL mRNA表达增加,海马CA1区锥体神经元的损伤和星形胶质细胞激活和浸润也被明显减轻。结论阿魏酸钠通过抑制Aβ25-35引起的海马炎症反应和p38MAPK活性,减轻大鼠海马锥体神经元的损伤,改善大鼠的学习记忆功能。展开更多
目的:探讨绞股蓝对海马注射Aβ1-40大鼠脑内细胞周期蛋白异常表达和钙稳态变化的影响。方法:动物随机分为绞股蓝组、模型组、对照组。运用淀粉样β蛋白双侧海马注射,模拟阿尔茨海默病脑内Aβ对神经系统的损害。Y型迷宫测试大鼠学习记忆...目的:探讨绞股蓝对海马注射Aβ1-40大鼠脑内细胞周期蛋白异常表达和钙稳态变化的影响。方法:动物随机分为绞股蓝组、模型组、对照组。运用淀粉样β蛋白双侧海马注射,模拟阿尔茨海默病脑内Aβ对神经系统的损害。Y型迷宫测试大鼠学习记忆能力,免疫组织化学染色和积分吸光度分析检测细胞周期蛋白A、B1(cyc linA、cyc lin B1),Fura-2/AM-荧光法测定海马细胞内Ca2+含量;并对绞股蓝组大鼠给予绞股蓝皂苷灌胃,观察其对AD大鼠上述各项指标变化的影响。结果:Aβ1-40海马注射大鼠学习记忆能力明显低于对照组(P<0.05),脑内细胞周期蛋白A、B1蛋白水平明显高于对照组,海马神经元内Ca2+含量显著高于对照组;而给予绞股蓝在一定程度上能改善大鼠学习记忆能力,降低cyc lin A、cyc lin B1蛋白和Ca2+含量的水平(P<0.05)。结论:绞股蓝对Aβ引起的动物学习记忆能力减退、海马神经元内异常表达细胞周期蛋白和钙稳态失衡有一定的逆转作用。展开更多
基金the Natural Scientific Foundation of China (NSFC3962526)National High-Technology Project-863 (102-10-01-04)
文摘AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells. METHODS: We performed cDNA RDA method by using abundant double-stranded cDNA messages provided by two self-constructed cDNA libraries (Allitridi-treated and paternal HGC cell line BGC823 cells cDNA libraries respectively). Bam H I and Xho I restriction sites harbored in the library vector were used to select representations. Northern and Slot blots analyses were employed to identify the obtained difference products. RESULTS: Fragments released from the cDNA library vector after restriction endonuclease digestion acted as good marker indicating the appropriate digestion degree for library DNA. Two novel expressed sequence tags (ESTs) and a recombinant gene were obtained. Slot blots result showed a 8-fold increase of glia-derived nexin/protease nexin 1 (GDN/PN1) gene expression level and 4-fold increase of hepatitis B virus x-interacting protein (XIP) mRNA level in BGC823 cells after Allitridi treatment for 72h. CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAs induced by Allitridi provide valuable molecular evidence for elucidating the garlic's efficacies against neurodegenerative and inflammatory diseases. Isolation of a recombinant gene and two novel ESTs further show cDNA RDA based on cDNA libraries to be a powerful method with high specificity and reproducibility in cloning differentially expressed genes.
文摘Background Alzheimer disease (AD) is a neurodegenerative disease related to aging. At present, its pathological mechanisms remain unclear. Family members of the renin-angiotensin system (RAS) play a role in neuronal plasticity, as well as formation of learning and memory. In this study, we explore the effects of altered angiotensin-converting enzyme (ACE), and investigate the possible mechanisms of perindopril, an ACE inhibitor, on brain structure and function in a rat model of AD, as well as the role that ACE plays in AD. Methods Sixty Sprague-Dawley rats were selected and randomly divided into 3 groups: control, AD, and perindopril. Each group consisted of 20 rats, with 10 rats for determining pathology, and the remaining 10 rats for quantifying ACE activity. The rat AD model was established by stereotactically injecting amyloid beta protein (A-beta) 1-42 into the right hippocampus. Learning and memory functions were tested using the Y-type electric maze. The number and morphology of abnormal neurons were determined by haematoxylin and eosin staining. Amyloid deposition was measured by Congo red staining. Finally, ACE activity was estimated by spectrophotometry. Results Compared with the control group, the number of times needed to escape electrical stimuli increased (23.70±3.13, P 〈0.001), the number of normal neurons in the CA1 region was reduced (density of 96.5±32.6/mm, P 〈0.001), amyloid deposition was obvious, and ACE activity increased ((34.4±6.6) nmol.g-1.min-1, P 〈0.001) in the AD group. In the perindopril group, the number of times needed to escape electrical stimuli decreased (18.50±3.66, P 〈0.001), the number of abnormal neurons increased (density of CA1 neurons was 180.8±28.5/mm, P 〈0.001), amyloid deposition was reduced, and ACE activity was down-regulated ((26.2±6.2) nmol.g-1.min-1, P 〈0.001). Conclusions ACE activity increased in the brains of AD rats. Perindopril improved learning and memory in AD rats, which correlated with de
基金National Natural Science Foundation of China(81503450):Experimental study on the treatment of transgenic mice with Alzheimer's disease by protecting neurovascular unit by supplementing Qi and activating blood circulation investigate。
文摘OBJECTIVE:To discuss the influence of Sailuotong(塞络通,SLT)on the Neurovascular Unit(NVUs)of amyloid precursor protein(APP)/presenilin-1(PS1)mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease(AD).METHODS:The mice were allocated into the following nine groups:(a)the C57 Black(C57BL)sham-operated group(control group),(b)ischaemic treatment in C57BL mice(the C57 ischaemic group),(c)the APP/PS1 sham surgery group(APP/PS1 model group),(d)ischaemic treatment in APP/PS1 mice(APP/PS1 ischaemic group),(e)C57BL mice treated with aspirin following ischaemic treatment(C57BL ischaemic+aspirin group),(f)C57BL mice treated with SLT following ischaemic treatment(C57BL ischaemic+SLT group),(g)APP/PS1 mice treated with SLT(APP/PS1+SLT group),(h)APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment(APP/PS1 ischaemic+donepezil hydrochloride group)and(i)APP/PS1 mice treated with SLT following ischaemic treatment(APP/PS1 ischaemic+SLT group).The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism.The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice.The hippocampus of each mouse was observed by haematoxylin and eosin(HE)and Congo red staining.The ultrastructure of NVUs in each group was observed by electron microscopy,and various biochemical indicators were detected by enzymelinked immunosorbent assay(ELISA).The protein expression level was detected by Western blot.The mRNA expression was detected by quantitative real-time polymerase chain reaction(qRT-PCR).RESULTS:The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice,which were restored by SLT.The results of HE staining showed that SLT restored the pathological changes of the NVUs.The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex a
基金European Union's Horizon Europe research and innovation programme under grant agreement No.101060607for the research and innovation programme under grant agreement No.101037796+1 种基金National Recovery and Resilience Plan(NRRP),Mission 4.Component 2 Investment 1.3-Call for proposals No.341 of March 15,2022 of Italian Ministry of University and Research funded by the European Union-NextGenerationEUAward Number:Project code PE00000003,Concession Decree No.1550 of October 11,2022 adopted by the Italian Ministry of University and Research,CUP H93C22000630001,Project title“ON Foods-Research and innovation network on food and nutrition Sustainability,Safety and Security-Working ON Foods”.
文摘Keratins and corneous proteins are key components of biomaterials used in a wide range of applications and are potential substitutes for petrochemical-based products. Horns, hooves, feathers, claws, and similar animal tissues are abundant sources of α-keratin and corneous β-proteins, which are by-products of the food industry. Their close association with the meat industry raises environmental and ethical concerns regarding their disposal. To promote an eco-friendly and circular use of these materials in novel applications, efforts have focused on recovering these residues to develop sustainable, non-animal-related, affordable, and scalable procedures. Here, we review and examine biotechnological methods for extracting and expressing α-keratins and corneous β-proteins in microorganisms. This review highlights consolidated research trends in biomaterials, medical devices, food supplements, and packaging, demonstrating the keratin industry's potential to create innovative value-added products. Additionally, it analyzes the state of the art of related intellectual property and market size to underscore the potential within a circular bioeconomic model.
文摘Repetitive transcranial magnetic stimulation (rTMS) has been utilized as a therapeutic tool for neurodegenerative disorders including Alzheimer's disease. However, the precise mechanisms of its clinical effects remain unknown. β-amyloid (Aβ) exhibits direct neurotoxic effects and is closely related to neuronal degeneration in Alzheimer's disease. Therefore, it has been hypothesized that the neuroprotective effects of rTMS are related to the mechanisms of protection against Aβ neurotoxicity. Organotypic hippocampal slices were prepared from 8-day old, Sprague Dawley rats. The tissue slices were exposed to 100 μmol/L Al3142 since day 12 in vitro with and without high-frequency (20 Hz) magnetic stimulation. Magnetic stimulation efficacy was evaluated by measuring neuronal nuclei (NeuN) protein expression and by observing cultures following propidium iodide fluorescence staining and bromodeoxyuridine (BrdU) immunohistochemistry. Lactate dehydrogenase activity was detected in the culture media to evaluate hippocampal neuronal damage. Our results demonstrated that high-frequency magnetic stimulation significantly reversed the reduction of NeuN protein expression because of Aβ1-42 exposure (P 〈 0.05) and significantly reduced the number of damaged cells in the hippocampal slices (P 〈 0.05). However, lactate dehydrogenase levels and anti-BrdU staining results did not reveal any statistical differences These findings indicate that high-frequency magnetic stimulation might have protective effect on hippocampal neurons from Aβ1-42 neurotoxicity.
文摘BACKGROUND: The findings about the alterations in cerebrospinal fluid beta-amyloid protein (Aβ ) and apolipoprotein E (APOE) after subarachnoid hemorrhage indicate that they have significant correlation with prognosis of patients. OBJECTⅣE: To observe the alterations in cerebrospinal fluid Aβ and ApoE after subarachnoid hemorrhage (SAH). DESIGN: Contrast observation. SETTING: Department of Neurosurgery, the First Hospital of Lanzhou University. PARTICIPANTS: A total of 25 SAH patients including 16 males and 9 females aged from 13 to 72 years were selected form Department of Neurosurgery, the First Affiliated Hospital of Lanzhou University from October 2003 to February 2004. The Hunt-Hess grade ranged from Ⅰ to Ⅳ, and patients admitted hospital in 24 hours after invasion, affirmed by the brain CT scan and lumbar vertebra puncture, no other severe complications and important organs' functional defect and severe infection, no hematological system disease. METHODS- All admitted patients were collected CSF by lumbar vertebra puncture in 24 hours. The cerebrospinal fluid (CSF) of control group came from the admitted 15 patients of our hospital that have no nervous system disease. Aβ content was detected by enzyme linked immunosorbent assay (ELISA), the kit was provided by the Central Laboratory of the First Hospital of Lanzhou University; ApoE concentration was detected by monoclone enzyme linked immunosorbent assay (ELISA), the kit was provided by the Immunotechnique Research Institute of the Fourth Military Medical University. S100B concentration was detected by enzyme linked immunosorbent assay double antibody sandwich method, the kit was provided by the Physiological Research Room of the Fourth Military Medical University. The data were indicated on Mean±SD and were analyzed by SPSS 10.0 statistical package. All data were handled through test of significance variance analysis, and groups were compared through independent sampler t test. The concentration was handled thr
文摘Objective: To construct a PC12 cell strain with neuronal differentiation, and observe the apoptosis and pro- liferation activity effects induced these cells by Amyloid beta-Protein (Aβ-43). Methods: 1) PC12 cells in logarithmic growth phase were subcultured for 24 h. After the culture fluid was changed, the cells were treated with Rat-β-NGF and cultured for 9 days. 2) Neuronal differentiation of PC12 cells in logarithmic growth phase were divided into four groups: control group (0), experimental group (1), experimental group (2) and experimental group (3). The concentrations of Aβ in the four groups were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. The cells were harvested at 24, 48 and 72 h later and stained with AnnexinV-FITC/PI after centrifugation and washing. Then flow cytometry was conducted to examine the apoptosis percentage. 3) NGF-induced PC12 cells were selected and Aβ with different concentrations was added. The final concentrations of Aβ were 0 μmol/L, 1.25 μmol/L, 2.5 μmol/L and 5 μmol/L, respectively. After the cells were incubated in an atmosphere of 5% CO2 at 37 °C in an incubator for 72 h, the OD values were examined. Results: 1) Neuronal differentiated PC12 cell lines were successfully established. 2) Flow cytometric examination indicated that Aβ (1.25, 2.5, and 5.0 μmol/L) could effectively induce apoptosis of neuronal-differented cells at the 24 h, 48 h and 72 h time points. 3) Aβ (0?5.00 μmol/L) had no obvious effect on proliferation or restraining of the neuronal differentiation of the PC12 cells after a 72 h interacting process. Conclusion: This investigation revealed successful neuronal differentiation of the PC12 cell strain. The induction of apoptosis of the neurocytes by various concentrations of Aβ was observed and the in- fluence of Aβ on induced proliferation of PC12 cells by Rat-β-NGF was revealed. This study may provide basis for future research on the molecular cure of AD and interdiction of AD evolution.
文摘Objective: To investigate the effects of lithium on cognitive function and metabolism of Amyloid-beta Protein Precursor (APP) and tau phosphorylation in rats chronically exposed to aluminum. Methods: Twenty-four chronically aluminum-exposed rats were randomly divided into 2 groups: a lithium-treatment group and a non-treatment group (n=12 per group). Lithium chloride was administered to the lithium-treatment group via gastric gavage daily for 6 weeks (200 mg/kg·d LiCl), while the non-treatment group was administered the same volume of sodium chloride by the same means. An additional control group (n=12) received no intervention. Memory function was evaluated by the Morris water maze test. Aβ was measured by immunohistochemical staining, while total APP, phosphorylated-tau protein, CDK5 and PP2A were determined by Western Blotting. Results: (1) Compared to the non-treatment group, the lithium-treatment group had a significantly shorter mean escape latency and a lower proportion of random navigation pattern in the spatial probe test (P<0.05). After the platform was taken away, the rats in the lithium-treatment group crossed the platform quadrant significantly more and stayed longer in the platform quadrant than those in the non-treatment group (P<0.05). (2) The number of Aβ positive neurons in the hippocampus and cortex was significantly less in the lithium-treatment group than in the non-treatment group (P<0.05), but the content of APP was not different between groups (P=0.730). (3) Phosphorylation of tau protein decreased significantly in the lithium-treatment group than that in the non-treatment group (P<0.05). The content of CDK5 in the lithium-treatment group was significantly less than that in the non-treatment group in the cortex and hippocampus, while there was no difference in the content of PP2A between the 2 groups. The expression of CDK5 was significantly correlated with phosphorylated tau (r=0.871, P=0.024) in the lithium-treatment group. Conclusion: Lithium may improve memory function in rats chron
文摘目的:探讨绞股蓝对海马注射Aβ1-40大鼠脑内细胞周期蛋白异常表达和钙稳态变化的影响。方法:动物随机分为绞股蓝组、模型组、对照组。运用淀粉样β蛋白双侧海马注射,模拟阿尔茨海默病脑内Aβ对神经系统的损害。Y型迷宫测试大鼠学习记忆能力,免疫组织化学染色和积分吸光度分析检测细胞周期蛋白A、B1(cyc linA、cyc lin B1),Fura-2/AM-荧光法测定海马细胞内Ca2+含量;并对绞股蓝组大鼠给予绞股蓝皂苷灌胃,观察其对AD大鼠上述各项指标变化的影响。结果:Aβ1-40海马注射大鼠学习记忆能力明显低于对照组(P<0.05),脑内细胞周期蛋白A、B1蛋白水平明显高于对照组,海马神经元内Ca2+含量显著高于对照组;而给予绞股蓝在一定程度上能改善大鼠学习记忆能力,降低cyc lin A、cyc lin B1蛋白和Ca2+含量的水平(P<0.05)。结论:绞股蓝对Aβ引起的动物学习记忆能力减退、海马神经元内异常表达细胞周期蛋白和钙稳态失衡有一定的逆转作用。