The paper gives an overview on experimental observations of the failure behavior of electrically insulating and conducting cracks in piezoelectric ce- ramics.The experiments include the indentation fracture test,the b...The paper gives an overview on experimental observations of the failure behavior of electrically insulating and conducting cracks in piezoelectric ce- ramics.The experiments include the indentation fracture test,the bending test on smooth samples,and the fracture test on pre-notched(or pre-cracked)compact ten- sion samples.For electrically insulating cracks,the experimental results show a com- plicated fracture behavior under electrical and mechanical loading.Fracture data are much scattered when a static electric field is applied.A statistically based frac- ture criterion is required.For electrically conducting cracks,the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate ceramics and that the concepts of fracture mechanics can be used to mea- sure the electrical fracture toughness.Furthermore,the electrical fracture toughness is much higher than the mechanical fracture toughness.The highly electrical fracture toughness arises from the greater energy dissipation around the conductive crack tip under purely electric loading,which is impossible under mechanical loading in the brittle ceramics.展开更多
The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the ...The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.展开更多
基金The project supported by an RGC grant from the Research Grant Council of the Hong Kong Special Administrative RegionChina
文摘The paper gives an overview on experimental observations of the failure behavior of electrically insulating and conducting cracks in piezoelectric ce- ramics.The experiments include the indentation fracture test,the bending test on smooth samples,and the fracture test on pre-notched(or pre-cracked)compact ten- sion samples.For electrically insulating cracks,the experimental results show a com- plicated fracture behavior under electrical and mechanical loading.Fracture data are much scattered when a static electric field is applied.A statistically based frac- ture criterion is required.For electrically conducting cracks,the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate ceramics and that the concepts of fracture mechanics can be used to mea- sure the electrical fracture toughness.Furthermore,the electrical fracture toughness is much higher than the mechanical fracture toughness.The highly electrical fracture toughness arises from the greater energy dissipation around the conductive crack tip under purely electric loading,which is impossible under mechanical loading in the brittle ceramics.
基金financially supported by the Commercial Aircraft Corporation of China, Ltd.
文摘The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.