In this paper, the mechanical behavior and buckling failure of SUS304 stainless steel tubes with different local sharp-notched depths subjected to cyclic bending were experimentally investigated. It can be seen that t...In this paper, the mechanical behavior and buckling failure of SUS304 stainless steel tubes with different local sharp-notched depths subjected to cyclic bending were experimentally investigated. It can be seen that the experimental moment-curvature relationship exhibits cyclic hardening and becomes a steady loop after a few cycles. However, the experimental ovalization-curvature relationship exhibits an increasing and ratcheting manner with the number of the bending cycles. In addition, higher notch depth of a tube leads to a more severe unsymmetrical trend of the ovalization-curvature relationship. It has been observed that the notch depth has almost no influence on the moment-curvature relationship. But, it has a strong influence on the ovalization-curvature relationship. Finally, the theoretical model proposed by Kyriakides and Shaw [1] was used in this study for simulating the controlled curvature-number of cycles to produce buckling relationship. Through comparison with the experimental data, the theoretical model can properly simulate the experimental展开更多
We determined the effects of the penetration depth and spline material and composite material type as well as joining method on bending moment resistance under diagonal compression and tension in common wood panel str...We determined the effects of the penetration depth and spline material and composite material type as well as joining method on bending moment resistance under diagonal compression and tension in common wood panel structures. Composite materials were laminated medium density fiberboard (MDF) and particleboard. Joining methods were butt and miter types. Spline materials were high density fiberboard (HDF). The penetration depths of plywood, wood (Carpinus betolus) and spline were 8, 11 and 14 mm. The results showed that in both diagonal com- pression and tension, MDF joints are stronger than particleboard joints, and the bending moment resistance under compression is higher compared with that in tension. The highest bending moment resistance under tension was shown in MDF, butt joined using plywood spline with 8 mm penetration depth, whereas under compression bending moment resistance was seen in MDF, miter joined with the HDF spline of 14 mm penetration depth.展开更多
文摘In this paper, the mechanical behavior and buckling failure of SUS304 stainless steel tubes with different local sharp-notched depths subjected to cyclic bending were experimentally investigated. It can be seen that the experimental moment-curvature relationship exhibits cyclic hardening and becomes a steady loop after a few cycles. However, the experimental ovalization-curvature relationship exhibits an increasing and ratcheting manner with the number of the bending cycles. In addition, higher notch depth of a tube leads to a more severe unsymmetrical trend of the ovalization-curvature relationship. It has been observed that the notch depth has almost no influence on the moment-curvature relationship. But, it has a strong influence on the ovalization-curvature relationship. Finally, the theoretical model proposed by Kyriakides and Shaw [1] was used in this study for simulating the controlled curvature-number of cycles to produce buckling relationship. Through comparison with the experimental data, the theoretical model can properly simulate the experimental
文摘We determined the effects of the penetration depth and spline material and composite material type as well as joining method on bending moment resistance under diagonal compression and tension in common wood panel structures. Composite materials were laminated medium density fiberboard (MDF) and particleboard. Joining methods were butt and miter types. Spline materials were high density fiberboard (HDF). The penetration depths of plywood, wood (Carpinus betolus) and spline were 8, 11 and 14 mm. The results showed that in both diagonal com- pression and tension, MDF joints are stronger than particleboard joints, and the bending moment resistance under compression is higher compared with that in tension. The highest bending moment resistance under tension was shown in MDF, butt joined using plywood spline with 8 mm penetration depth, whereas under compression bending moment resistance was seen in MDF, miter joined with the HDF spline of 14 mm penetration depth.