By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and contro...By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and controlling factors of the tight sandstone reservoirs in the Huagang Formation of Xihu sag, East China Sea Basin were comprehensively studied. The results show that: the sandstones of the Huagang Formation in the central inverted structural belt are poor in physical properties, dominated by feldspathic lithic quartz sandstone, high in quartz content, low in matrix, kaolinite and cement contents, and coarse in clastic grains;the acidic diagenetic environment formed by organic acids and meteoric water is vital for the formation of secondary pores in the reservoirs;and the development and distribution of the higher quality reservoirs in the tight sandstones of the Huagang Formation are controlled by sediment source, sedimentary facies belt, abnormal overpressure and diagenetic environment evolution. Sediment provenance and dominant sedimentary facies led to favorable initial physical properties of the sandstones in the Huagang Formation, which is the prerequisite for development of reservoirs with better quality later. Abnormal high pressure protected the primary pores, thus improving physical properties of the reservoirs in the Huagang Formation. Longitudinally, due to the difference in diagenetic environment evolution, the high-quality reservoirs in the Huagang Formation are concentrated in the sections formed in acidic diagenetic environment. Laterally, the high-quality reservoirs are concentrated in the lower section of the Huagang Formation with abnormal high pressure in the middle-northern part;but concentrated in the upper section of Huagang Formation shallower in burial depth in the middle-southern part.展开更多
Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a low...Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a lower induced fracture zone according to the log response characteristics. The upper induced fracture zone is characterized by the development of pervasive fractures and has a poor sealing or non-sealing capability. It therefore can act as pathways for hydrocarbon migration. The lower induced fracture zone consists of fewer fractures and has limited sealing capability. The crushed zone has a good sealing capability comparable to mudstone and can thus prevent lateral migration of fluid. Through physical modeling and comparing laboratory data with calculated data of oil column heights of traps sealed by faults, it is concluded that the fault-sealing capability for oil and gas is limited. When the oil column height reaches a threshold, oil will spill over from the top of reservoir along the lower induced fracture zone under the action of buoyancy, and the size of reservoir will remain unchanged. Analysis of the formation mechanisms of the fault-sealed reservoirs in the Nanpu Sag indicated that the charging sequence of oil and gas in the reservoir was from lower formation to upper formation, with the fault playing an important role in oil and gas accumulation. The hydrocarbon potential in reverse fault-sealed traps is much better than that in the consequent fault-sealed traps. The reverse fault-sealed traps are favorable and preferred exploration targets.展开更多
Tectonism is of extreme importance to sequence stratigraphic patterns in continental sedimentary basins, affecting both the architectures and internal makeup of sequences. Sequence stratigraphic framework of the Paleo...Tectonism is of extreme importance to sequence stratigraphic patterns in continental sedimentary basins, affecting both the architectures and internal makeup of sequences. Sequence stratigraphic framework of the Paleogene system in the Fushan sag, northern South China Sea, was built using 3D and 2D seismic data, complemented by drilling cores and well logs data. One first-order, three second-order and seven third-order sequences were identified. Analysis of paleotectonic stress field, unconformities and subsidence history showed that the Paleogene tectonic evolution presented significant characteristics of multistage and episode, and can be divided into three stages: rifting stage I(initial rifting period), rifting stage II(rapid subsidence period), rifting stage III(fault-depressed diversionary period). Partition of the west and east in tectonic activity was obvious. The west area showed relatively stronger tectonic activity than the east area, especially during the rifting stage II. Episodic rifting and lateral variations in tectonic activity resulted in a wide variety of structural slope break belts, which controlled both the sequence architectures and interval makeup, and strongly constrained the development of special facies zones or sand bodies that tended to form hydrocarbon accumulation. This paper classifies the genetic types of slope break belts and their relevant sequence stratigraphic patterns within the Fushan sag, and further discusses the tectonic evolution controls on sequence stratigraphic patterns, which suggests that vertical evolution paths of structural slope break belts and relevant sequence stratigraphic patterns as a response to the Paleogene tectonic evolution were strongly controlled by sag margin types and lateral variations of tectonic activity.展开更多
基金Supported by the China National Science and Technology Major Project(2016ZX05027-002-006).
文摘By means of thin section analysis, zircon U-Pb dating, scanning electron microscopy, electron probe, laser micro carbon and oxygen isotope analysis, the lithologic features, diagenetic environment evolution and controlling factors of the tight sandstone reservoirs in the Huagang Formation of Xihu sag, East China Sea Basin were comprehensively studied. The results show that: the sandstones of the Huagang Formation in the central inverted structural belt are poor in physical properties, dominated by feldspathic lithic quartz sandstone, high in quartz content, low in matrix, kaolinite and cement contents, and coarse in clastic grains;the acidic diagenetic environment formed by organic acids and meteoric water is vital for the formation of secondary pores in the reservoirs;and the development and distribution of the higher quality reservoirs in the tight sandstones of the Huagang Formation are controlled by sediment source, sedimentary facies belt, abnormal overpressure and diagenetic environment evolution. Sediment provenance and dominant sedimentary facies led to favorable initial physical properties of the sandstones in the Huagang Formation, which is the prerequisite for development of reservoirs with better quality later. Abnormal high pressure protected the primary pores, thus improving physical properties of the reservoirs in the Huagang Formation. Longitudinally, due to the difference in diagenetic environment evolution, the high-quality reservoirs in the Huagang Formation are concentrated in the sections formed in acidic diagenetic environment. Laterally, the high-quality reservoirs are concentrated in the lower section of the Huagang Formation with abnormal high pressure in the middle-northern part;but concentrated in the upper section of Huagang Formation shallower in burial depth in the middle-southern part.
基金the Key Project of Chinese National Programs for Fundamental Research and Development (973 Program, No. 2006CB202308)the National Natural Science Foundation of China (Grant No. 40472078)
文摘Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a lower induced fracture zone according to the log response characteristics. The upper induced fracture zone is characterized by the development of pervasive fractures and has a poor sealing or non-sealing capability. It therefore can act as pathways for hydrocarbon migration. The lower induced fracture zone consists of fewer fractures and has limited sealing capability. The crushed zone has a good sealing capability comparable to mudstone and can thus prevent lateral migration of fluid. Through physical modeling and comparing laboratory data with calculated data of oil column heights of traps sealed by faults, it is concluded that the fault-sealing capability for oil and gas is limited. When the oil column height reaches a threshold, oil will spill over from the top of reservoir along the lower induced fracture zone under the action of buoyancy, and the size of reservoir will remain unchanged. Analysis of the formation mechanisms of the fault-sealed reservoirs in the Nanpu Sag indicated that the charging sequence of oil and gas in the reservoir was from lower formation to upper formation, with the fault playing an important role in oil and gas accumulation. The hydrocarbon potential in reverse fault-sealed traps is much better than that in the consequent fault-sealed traps. The reverse fault-sealed traps are favorable and preferred exploration targets.
基金supported by the National Natural Science Foundation of China (Nos. 41272122, 41202074)
文摘Tectonism is of extreme importance to sequence stratigraphic patterns in continental sedimentary basins, affecting both the architectures and internal makeup of sequences. Sequence stratigraphic framework of the Paleogene system in the Fushan sag, northern South China Sea, was built using 3D and 2D seismic data, complemented by drilling cores and well logs data. One first-order, three second-order and seven third-order sequences were identified. Analysis of paleotectonic stress field, unconformities and subsidence history showed that the Paleogene tectonic evolution presented significant characteristics of multistage and episode, and can be divided into three stages: rifting stage I(initial rifting period), rifting stage II(rapid subsidence period), rifting stage III(fault-depressed diversionary period). Partition of the west and east in tectonic activity was obvious. The west area showed relatively stronger tectonic activity than the east area, especially during the rifting stage II. Episodic rifting and lateral variations in tectonic activity resulted in a wide variety of structural slope break belts, which controlled both the sequence architectures and interval makeup, and strongly constrained the development of special facies zones or sand bodies that tended to form hydrocarbon accumulation. This paper classifies the genetic types of slope break belts and their relevant sequence stratigraphic patterns within the Fushan sag, and further discusses the tectonic evolution controls on sequence stratigraphic patterns, which suggests that vertical evolution paths of structural slope break belts and relevant sequence stratigraphic patterns as a response to the Paleogene tectonic evolution were strongly controlled by sag margin types and lateral variations of tectonic activity.