In this review,we introduce well-known Bell inequalities,the relations between the Bell inequality and quantum separability,and the entanglement distillation of quantum states.It is shown that any pure entangled quant...In this review,we introduce well-known Bell inequalities,the relations between the Bell inequality and quantum separability,and the entanglement distillation of quantum states.It is shown that any pure entangled quantum state violates one of Bell-like inequalities.Moreover,quantum states that violate any one of these Bell-like inequalities are shown to be distillable.New Bell inequalities that detect more entangled mixed states are also introduced.展开更多
The Bell theorem and inequality were derived as consequences of seemingly reasonable physical and statistical hypotheses. Bell’s assumptions were used to deduce cross-correlations of three spin measurements on two en...The Bell theorem and inequality were derived as consequences of seemingly reasonable physical and statistical hypotheses. Bell’s assumptions were used to deduce cross-correlations of three spin measurements on two entangled particles neglecting non-commutation. The assumed correlation functions, later confirmed for certain quantum measurements, violate the Bell inequality. The present paper reviews a more general derivation of the Bell inequality showing that it is identically satisfied by finite data sets whether deterministic or random, after assuming merely that they exist. It is thereafter concerned with the consequences of this result for interpretations of the inequality that result in its violation. A primary finding is that correlation functions have differing forms due to quantum commutation, non-commutation, and conditions of measurement, and result in satisfaction of the Bell inequality used consistently with its derivation. A stochastic process having the same correlation function for all variable pairs is shown to be inconsistent with experimentally reported data. The logic of the three and four variable inequalities is shown to be similar. Finally the inequalities in probabilities are shown to follow from those in correlations with quantum mechanical results satisfying either when properly implemented.展开更多
It is not generally known that the inequality that Bell derived using three random variables must be identically satisfied by any three corresponding data sets of ±1’s that are writable on paper. This surprising...It is not generally known that the inequality that Bell derived using three random variables must be identically satisfied by any three corresponding data sets of ±1’s that are writable on paper. This surprising fact is not immediately obvious from Bell’s inequality derivation based on causal random variables, but follows immediately if the same mathematical operations are applied to finite data sets. For laboratory data, the inequality is identically satisfied as a fact of pure algebra, and its satisfaction is independent of whether the processes generating the data are local, non-local, deterministic, random, or nonsensical. It follows that if predicted correlations violate the inequality, they represent no three cross-correlated data sets that can exist, or can be generated from valid probability models. Reported data that violate the inequality consist of probabilistically independent data-pairs and are thus inconsistent with inequality derivation. In the case of random variables as Bell assumed, the correlations in the inequality may be expressed in terms of the probabilities that give rise to them. A new inequality is then produced: The Wigner inequality, that must be satisfied by quantum mechanical probabilities in the case of Bell experiments. If that were not the case, predicted quantum probabilities and correlations would be inconsistent with basic algebra.展开更多
The original Bell inequality was obtained in a statistical derivation assuming three mutually cross-correlated random variables (four in the later version). Given that observations destroy the particles, the physical ...The original Bell inequality was obtained in a statistical derivation assuming three mutually cross-correlated random variables (four in the later version). Given that observations destroy the particles, the physical realization of three variables from an experiment producing two particles per trial requires two separate trial runs. One assumed variable value (for particle 1) occurs at a fixed instrument setting in both trial runs while a second variable (for particle 2) occurs at alternative instrument settings in the two trial runs. Given that measurements on the two particles occurring in each trial are themselves correlated, measurements from independent realizations at mutually exclusive settings on particle 2 are conditionally independent, i.e., conditionally dependent on particle 1, through probability. This situation is realized from variables defined by Bell using entangled particle pairs. Two correlations have the form that Bell computed from entanglement, but a third correlation from conditionally independent measurements has a different form. When the correlations are computed using quantum probabilities, the Bell inequality is satisfied without recourse to assumptions of non-locality, or non-reality.展开更多
In constructing his theorem, Bell assumed that correlation functions among non-commuting variables are the same as those among commuting variables. However, in quantum mechanics, multiple data values exist simultaneou...In constructing his theorem, Bell assumed that correlation functions among non-commuting variables are the same as those among commuting variables. However, in quantum mechanics, multiple data values exist simultaneously for commuting operations while for non-commuting operations data are conditional on prior outcomes, or may be predicted as alternative outcomes of the non-commuting operations. Given these qualitative differences, there is no reason why correlation functions among non-commuting variables should be the same as those among commuting variables, as assumed by Bell. When data for commuting and noncommuting operations are predicted from quantum mechanics, their correlations are different, and they now satisfy the Bell inequality.展开更多
Counterfactual definiteness must be used as at least one of the postulates or axioms that are necessary to derive Bell-type inequalities. It is considered by many to be a postulate that not only is commensurate with c...Counterfactual definiteness must be used as at least one of the postulates or axioms that are necessary to derive Bell-type inequalities. It is considered by many to be a postulate that not only is commensurate with classical physics (as for example Einstein’s special relativity), but also separates and distinguishes classical physics from quantum mechanics. It is the purpose of this paper to show that Bell’s choice of mathematical functions and independent variables implicitly includes counterfactual definiteness. However, his particular choice of variables reduces the generality of his theory, as well as the physics of all Bell-type theories, so significantly that no meaningful comparison of these theories with actual Einstein-Podolsky-Rosen experiments can be made.展开更多
Quantum entanglement and quantum nonlocality of N-photon entangled states |ψNm) m Cm [cos γ|N - m) 1 |m)2 + e^iθm sinγ|m)1|N- m)2] and their superpositions are studied. We point out that the relative ph...Quantum entanglement and quantum nonlocality of N-photon entangled states |ψNm) m Cm [cos γ|N - m) 1 |m)2 + e^iθm sinγ|m)1|N- m)2] and their superpositions are studied. We point out that the relative phase θm affects the quantum nonlocality but not the quantum entanglement for the state |ψNm). We show that quantum nonlocality can be controlled and manipulated by adjusting the state parameters of |ψNm), superposition coefficients, and the azimuthal angles of the Bell operator. We also show that the violation of the Bell inequality can reach its maximal value under certain conditions. It is found that quantum superpositions based on |ψNm) can increase the amount of entanglement, and give more ways to reach the maximal violation of the Bell inequality.展开更多
We present a detailed analysis of the set theoretical proof of Wigner for Bell type inequalities with the following result. Wigner introduced a crucial assumption that is not related to Einstein’s local realism, but ...We present a detailed analysis of the set theoretical proof of Wigner for Bell type inequalities with the following result. Wigner introduced a crucial assumption that is not related to Einstein’s local realism, but instead, without justification, to the existence of certain joint probability measures for possible and actual measurement outcomes of Einstein-Podolsky-Rosen (EPR) experiments. His conclusions about Einstein’s local realism are, therefore, not applicable to EPR experiments and the contradiction of the experimental outcomes to Wigner’s results has no bearing on the validity of Einstein’s local realism.展开更多
基金supported by the National Natural Science Foundation of China(10875081)Key Program of Beijing Municipal Eduction Commission(KZ200810028013)Academic Human Resources Development in Institutions of Higher Learning(PHR201007107)
文摘In this review,we introduce well-known Bell inequalities,the relations between the Bell inequality and quantum separability,and the entanglement distillation of quantum states.It is shown that any pure entangled quantum state violates one of Bell-like inequalities.Moreover,quantum states that violate any one of these Bell-like inequalities are shown to be distillable.New Bell inequalities that detect more entangled mixed states are also introduced.
文摘The Bell theorem and inequality were derived as consequences of seemingly reasonable physical and statistical hypotheses. Bell’s assumptions were used to deduce cross-correlations of three spin measurements on two entangled particles neglecting non-commutation. The assumed correlation functions, later confirmed for certain quantum measurements, violate the Bell inequality. The present paper reviews a more general derivation of the Bell inequality showing that it is identically satisfied by finite data sets whether deterministic or random, after assuming merely that they exist. It is thereafter concerned with the consequences of this result for interpretations of the inequality that result in its violation. A primary finding is that correlation functions have differing forms due to quantum commutation, non-commutation, and conditions of measurement, and result in satisfaction of the Bell inequality used consistently with its derivation. A stochastic process having the same correlation function for all variable pairs is shown to be inconsistent with experimentally reported data. The logic of the three and four variable inequalities is shown to be similar. Finally the inequalities in probabilities are shown to follow from those in correlations with quantum mechanical results satisfying either when properly implemented.
文摘It is not generally known that the inequality that Bell derived using three random variables must be identically satisfied by any three corresponding data sets of ±1’s that are writable on paper. This surprising fact is not immediately obvious from Bell’s inequality derivation based on causal random variables, but follows immediately if the same mathematical operations are applied to finite data sets. For laboratory data, the inequality is identically satisfied as a fact of pure algebra, and its satisfaction is independent of whether the processes generating the data are local, non-local, deterministic, random, or nonsensical. It follows that if predicted correlations violate the inequality, they represent no three cross-correlated data sets that can exist, or can be generated from valid probability models. Reported data that violate the inequality consist of probabilistically independent data-pairs and are thus inconsistent with inequality derivation. In the case of random variables as Bell assumed, the correlations in the inequality may be expressed in terms of the probabilities that give rise to them. A new inequality is then produced: The Wigner inequality, that must be satisfied by quantum mechanical probabilities in the case of Bell experiments. If that were not the case, predicted quantum probabilities and correlations would be inconsistent with basic algebra.
文摘The original Bell inequality was obtained in a statistical derivation assuming three mutually cross-correlated random variables (four in the later version). Given that observations destroy the particles, the physical realization of three variables from an experiment producing two particles per trial requires two separate trial runs. One assumed variable value (for particle 1) occurs at a fixed instrument setting in both trial runs while a second variable (for particle 2) occurs at alternative instrument settings in the two trial runs. Given that measurements on the two particles occurring in each trial are themselves correlated, measurements from independent realizations at mutually exclusive settings on particle 2 are conditionally independent, i.e., conditionally dependent on particle 1, through probability. This situation is realized from variables defined by Bell using entangled particle pairs. Two correlations have the form that Bell computed from entanglement, but a third correlation from conditionally independent measurements has a different form. When the correlations are computed using quantum probabilities, the Bell inequality is satisfied without recourse to assumptions of non-locality, or non-reality.
文摘In constructing his theorem, Bell assumed that correlation functions among non-commuting variables are the same as those among commuting variables. However, in quantum mechanics, multiple data values exist simultaneously for commuting operations while for non-commuting operations data are conditional on prior outcomes, or may be predicted as alternative outcomes of the non-commuting operations. Given these qualitative differences, there is no reason why correlation functions among non-commuting variables should be the same as those among commuting variables, as assumed by Bell. When data for commuting and noncommuting operations are predicted from quantum mechanics, their correlations are different, and they now satisfy the Bell inequality.
文摘Counterfactual definiteness must be used as at least one of the postulates or axioms that are necessary to derive Bell-type inequalities. It is considered by many to be a postulate that not only is commensurate with classical physics (as for example Einstein’s special relativity), but also separates and distinguishes classical physics from quantum mechanics. It is the purpose of this paper to show that Bell’s choice of mathematical functions and independent variables implicitly includes counterfactual definiteness. However, his particular choice of variables reduces the generality of his theory, as well as the physics of all Bell-type theories, so significantly that no meaningful comparison of these theories with actual Einstein-Podolsky-Rosen experiments can be made.
文摘Quantum entanglement and quantum nonlocality of N-photon entangled states |ψNm) m Cm [cos γ|N - m) 1 |m)2 + e^iθm sinγ|m)1|N- m)2] and their superpositions are studied. We point out that the relative phase θm affects the quantum nonlocality but not the quantum entanglement for the state |ψNm). We show that quantum nonlocality can be controlled and manipulated by adjusting the state parameters of |ψNm), superposition coefficients, and the azimuthal angles of the Bell operator. We also show that the violation of the Bell inequality can reach its maximal value under certain conditions. It is found that quantum superpositions based on |ψNm) can increase the amount of entanglement, and give more ways to reach the maximal violation of the Bell inequality.
文摘We present a detailed analysis of the set theoretical proof of Wigner for Bell type inequalities with the following result. Wigner introduced a crucial assumption that is not related to Einstein’s local realism, but instead, without justification, to the existence of certain joint probability measures for possible and actual measurement outcomes of Einstein-Podolsky-Rosen (EPR) experiments. His conclusions about Einstein’s local realism are, therefore, not applicable to EPR experiments and the contradiction of the experimental outcomes to Wigner’s results has no bearing on the validity of Einstein’s local realism.