An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding ...An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties.展开更多
This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is design...This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.展开更多
针对车载自组织网(Vehicular Ad Hoc Networks,VANETs)拓扑结构经常变化导致通信链路容易断裂而通信质量不可靠的问题,将人工蜂与K-means混合算法应用在VANETs中。在成簇阶段,该混合算法利用人工蜂算法较强的全局搜索能力确定初始聚类中...针对车载自组织网(Vehicular Ad Hoc Networks,VANETs)拓扑结构经常变化导致通信链路容易断裂而通信质量不可靠的问题,将人工蜂与K-means混合算法应用在VANETs中。在成簇阶段,该混合算法利用人工蜂算法较强的全局搜索能力确定初始聚类中心,代替传统的K-means对初始聚类中心的选择,这样就消除了K-means对随机初始聚类中心的依赖。在簇头选取阶段,类内具有最小的速度方差以及到其他节点最小平均距离的车辆节点被选择为簇头。在簇的维护阶段,当最优节点即簇头有变化时,次优节点被选为临时簇头,直至更新为最优节点的簇头信息。为测试该混合算法的性能,将其和PSO与K-means混合算法、经典Kmeans算法进行实验对比,结果表明,该混合算法能够更加稳定VANETs通信链路,具有更高成簇质量和更高通信质量。展开更多
文摘An integral terminal sliding mode controller is proposed in order to control chaos in a rod-type plasma torch system.In this method, a new sliding surface is defined based on a combination of the conventional sliding surface in terminal sliding mode control and a nonlinear function of the integral of the system states. It is assumed that the dynamics of a chaotic system are unknown and also the system is exposed to disturbance and unstructured uncertainty. To achieve a chattering-free and high-speed response for such an unknown system, an adaptive neuro-fuzzy inference system is utilized in the next step to approximate the unknown part of the nonlinear dynamics. Then, the proposed integral terminal sliding mode controller stabilizes the approximated system based on Lyapunov's stability theory. In addition, a Bee algorithm is used to select the coefficients of integral terminal sliding mode controller to improve the performance of the proposed method. Simulation results demonstrate the improvement in the response speed, chattering rejection, transient response,and robustness against uncertainties.
基金supported by National High Technology Research and Development Program of China (863 Program) (No. 2007AA041603)National Natural Science Foundation of China (No. 60475035)+2 种基金Key Technologies Research and Development Program Foundation of Hunan Province of China (No. 2007FJ1806)Science and Technology Research Plan of National University of Defense Technology (No. CX07-03-01)Top Class Graduate Student Innovation Sustentation Fund of National University of Defense Technology (No. B070302.)
文摘This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.
文摘针对车载自组织网(Vehicular Ad Hoc Networks,VANETs)拓扑结构经常变化导致通信链路容易断裂而通信质量不可靠的问题,将人工蜂与K-means混合算法应用在VANETs中。在成簇阶段,该混合算法利用人工蜂算法较强的全局搜索能力确定初始聚类中心,代替传统的K-means对初始聚类中心的选择,这样就消除了K-means对随机初始聚类中心的依赖。在簇头选取阶段,类内具有最小的速度方差以及到其他节点最小平均距离的车辆节点被选择为簇头。在簇的维护阶段,当最优节点即簇头有变化时,次优节点被选为临时簇头,直至更新为最优节点的簇头信息。为测试该混合算法的性能,将其和PSO与K-means混合算法、经典Kmeans算法进行实验对比,结果表明,该混合算法能够更加稳定VANETs通信链路,具有更高成簇质量和更高通信质量。