To optimize the operation parameters of the beam line of NBI on HL-2A, features of the beam line, including the beam profile and the power deposited on components and injected into the tokamak plasma, were measured. T...To optimize the operation parameters of the beam line of NBI on HL-2A, features of the beam line, including the beam profile and the power deposited on components and injected into the tokamak plasma, were measured. The operational parameters of the four sources on the beam line were optimized with the monitor of the beam profile and beam power, and the transmission efficiency of the NBI injected power was therefore increased. A beam diagnostic system for the beam line of the NBI system on HL-2A as well as the diagnosed results was also presented.展开更多
The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction te...The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction techniques.Therefore,it is critical to measure the muon beam characteristics.We set up a muon beam monitor(MBM),where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET.The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run.The development of the MBM,including its mechanical structure,electronic readout,and beam measurement results,are discussed.展开更多
The stimulated Brillouin scattering phase conjugation mirror (SBS-PCM) based on liquid media is widely used in high-power laser systems due to its robust thermal load capacity, high energy conversion efficiency and im...The stimulated Brillouin scattering phase conjugation mirror (SBS-PCM) based on liquid media is widely used in high-power laser systems due to its robust thermal load capacity, high energy conversion efficiency and improved beam quality. Nevertheless, with an increase in the pump repetition rate, thermally-induced blooming and optical breakdown can emerge, leading to distortions in the Stokes beam. In this study, we delved into the thermal effects in liquid SBS-PCMs employing hydrodynamic analysis, establishing a relationship between beam profile distortion and the thermal convection field. We calculated the temperature and convection velocity distribution based on the pump light parameters and recorded the corresponding beam profiles. The intensities of the beam profiles were modulated in alignment with the convection directions, reaching a velocity peak of 2.85 mm/s at a pump pulse repetition rate of 250 Hz. The residual sum of squares (RSS) was employed to quantify the extent of beam profile distortion relative to a Gaussian distribution. The RSS escalated to 7.8, in contrast to 0.7 of the pump light at a pump pulse repetition rate of 500 Hz. By suppressing thermal convection using a high-viscosity medium, we effectively mitigated beam distortion. The RSS was reduced to 0.7 at a pump pulse repetition rate of 500 Hz, coinciding with a twentyfold increase in viscosity, thereby enhancing the beam quality. By integrating hydrodynamic analysis, we elucidated and mitigated distortion with targeted solutions. Our research offers an interdisciplinary perspective on studying thermal effects and contributes to the application of SBS-PCMs in high-repetition-rate laser systems by unveiling the mechanism of photothermal effects.展开更多
基金supported by Chinese HL-2A tokamak physics experiment (No.H6600003)
文摘To optimize the operation parameters of the beam line of NBI on HL-2A, features of the beam line, including the beam profile and the power deposited on components and injected into the tokamak plasma, were measured. The operational parameters of the four sources on the beam line were optimized with the monitor of the beam profile and beam power, and the transmission efficiency of the NBI injected power was therefore increased. A beam diagnostic system for the beam line of the NBI system on HL-2A as well as the diagnosed results was also presented.
基金supported in part by Fundamental Research Funds for the Central Universities(23xkjc017)at Sun Yat-sen Universitythe National Natural Science Foundation of China(No.12075326)JSPS KAKENHI(No.22H00139)。
文摘The coherent muon-to-electron transition(COMET)experiment is a leading experiment for the coherent conversion of μ^(-)N→e^(-)N using a high-intensity pulsed muon beamline,produced using innovative slow-extraction techniques.Therefore,it is critical to measure the muon beam characteristics.We set up a muon beam monitor(MBM),where scintillating fibers woven in a cross shape were coupled to silicon photomultipliers to measure the spatial profile and timing structure of the extracted muon beam for the COMET.The MBM detector was tested successfully with a proton beamline at the China Spallation Neutron Source and took data with good performance in the commissioning run.The development of the MBM,including its mechanical structure,electronic readout,and beam measurement results,are discussed.
基金supported by the National Natural Science Foundation of China (Nos. 61927815 and 62075056)the Natural Science Foundation of Tianjin City (No. 22JCYBJC01100)+2 种基金the Natural Science Foundation of Hebei Province (No. F2023202063)the Funds for Basic Scientific Research of Hebei University of Technology (No. JBKYTD2201)support from the Shijiazhuang Overseas Talents Introduction Project (No. 20230004)
文摘The stimulated Brillouin scattering phase conjugation mirror (SBS-PCM) based on liquid media is widely used in high-power laser systems due to its robust thermal load capacity, high energy conversion efficiency and improved beam quality. Nevertheless, with an increase in the pump repetition rate, thermally-induced blooming and optical breakdown can emerge, leading to distortions in the Stokes beam. In this study, we delved into the thermal effects in liquid SBS-PCMs employing hydrodynamic analysis, establishing a relationship between beam profile distortion and the thermal convection field. We calculated the temperature and convection velocity distribution based on the pump light parameters and recorded the corresponding beam profiles. The intensities of the beam profiles were modulated in alignment with the convection directions, reaching a velocity peak of 2.85 mm/s at a pump pulse repetition rate of 250 Hz. The residual sum of squares (RSS) was employed to quantify the extent of beam profile distortion relative to a Gaussian distribution. The RSS escalated to 7.8, in contrast to 0.7 of the pump light at a pump pulse repetition rate of 500 Hz. By suppressing thermal convection using a high-viscosity medium, we effectively mitigated beam distortion. The RSS was reduced to 0.7 at a pump pulse repetition rate of 500 Hz, coinciding with a twentyfold increase in viscosity, thereby enhancing the beam quality. By integrating hydrodynamic analysis, we elucidated and mitigated distortion with targeted solutions. Our research offers an interdisciplinary perspective on studying thermal effects and contributes to the application of SBS-PCMs in high-repetition-rate laser systems by unveiling the mechanism of photothermal effects.