期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
二次曲线族及其应用 被引量:1
1
作者 房亮 秦丽 《泰安师专学报》 2002年第3期14-17,共4页
介绍了二次曲线族的定义和分类 ,并举例说明了它在求二次曲线的方程、解二元二次方程组及解一元四次方程中的应用 .从中可以看出 ,利用二次曲线族解题 ,能大大减少计算量 。
关键词 二次曲线族 退化 二次曲线方程 二元二次方程
下载PDF
代数学基本定理的推广 被引量:1
2
作者 杨露 《烟台师范学院学报(自然科学版)》 2000年第2期150-152,共3页
将代数学基本定理推广到某类矩阵多项式 。
关键词 代数学 基本定理 矩阵多项式 推广
下载PDF
A New Understanding on the Problem That the Quintic Equation Has No Radical Solutions
3
作者 Xiaochun Mei 《Advances in Pure Mathematics》 2020年第9期508-539,共32页
It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted t... It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted that general quintic equations had no radical solutions. However, Tang Jianer <i><span style="font-family:Verdana;font-size:12px;">et</span></i><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> recently prove that there are radical solutions for some quintic equations with special forms. The theories of Abel and Galois cannot explain these results. On the other hand, Gauss </span><i><span style="font-family:Verdana;font-size:12px;">et</span></i></span><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> proved the fundamental theorem of algebra. The theorem declared that there were </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> solutions for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree equations, including the radical and non-radical solutions. The theories of Abel and Galois contradicted with the fundamental theorem of algebra. Due to the reasons above, the proofs of Abel and Galois should be re-examined and re-evaluated. The author carefully analyzed the Abel’s original paper and found some serious mistakes. In order to prove that the general solution of algebraic equation</span></span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">he proposed was effective for the cubic equation, Abel took the known solutions of cubic equation as a pr 展开更多
关键词 Quintic Equation Gauss basic theorem of algebra Radical Solution Abel’s Theory Galois’s Theory Solvable Group Lagrange’s Resolvents
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部