The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the pr...The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the prostate (TmLRP). TmLRP and partial bladder neck mucosa were performed in 15 healthy adult male crossbred canines. Wound specimens were harvested at 3 days, and 1, 2, 3, and 4 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin staining. The expression of cytokeratin 14 (CK14), CK5, CK18, synaptophysin (Syn), chromogranin A (CgA), uroplakin, transforming growth factor-β1 (TGF-β1), and TGF-β type Ⅱ receptor in prostatic urethra wound were examined by immunohistochemistry and real-time polymerase chain reaction, respectively. Van Gieson staining was performed to determine the expression of collagen fibers in prostatic urethra and bladder neck would. The results showed that the re-epithelialization of the prostatic urethra resulted from the mobilization of proliferating epithelial cells from residual prostate tissue under the wound. The proliferating cells expressed CK14, CK5, but not CK18, Syn, and CgA and re-epithelialize expressed uroplakin since 3 weeks. There were enhanced TGF-β1 and TGF-β type Ⅱ receptor expression in proliferating cells and regenerated cells, which correlated with specific phases of re-epithelialization. Compared with the re-epithelialization of the bladder neck, re-epithelialization of canine prostatic urethra was faster, and the expression of collagen fibers was relatively low. In conclusion, re-epithelialization in canine prostatic urethra resulted from prostate basal cells after TmLRP and this re-epithelialization way may represent the ideal healing method from anatomic repair to functional recovery after injury.展开更多
Background: Due to advances in high-frequency ultrasound technology, it is easier to detect fine structures of skin lesions. The aim of this study was to examine the ultrasonographic features and use recurrence risk s...Background: Due to advances in high-frequency ultrasound technology, it is easier to detect fine structures of skin lesions. The aim of this study was to examine the ultrasonographic features and use recurrence risk stratification to assess the diagnostic performance of pre-operative ultrasound examination of basal cell carcinoma (BCC). Methods: This was a retrospective study. Forty-six BCC lesions underwent pre-operative ultrasound examination using 50- and 20- MHz probes. Ultrasonographic shape, margin, internal echoes, hyper-echoic spots, posterior echoes, and depth of the lesion were evaluated and correlated with the risk of recurrence based on histological features. Results: Forty-two patients had 46 skin lesions in total. The high-risk (n = 6) and low-risk (n = 40) groups exhibited considerable overlap in the ultrasonographic manifestations and no significant difference in margin (χ^2 = 3.231, P = 0.072), internal echo (χ^2 = 1.592, P = 0.207), or posterior echo (P = 0.169). However, high-risk BCCs tended to be irregular in shape than low-risk lesions (χ^2 = 4.313, P = 0.038). Both types presented hyper-echoic spots (χ^2 = 1.850, P = 0.174). Additionally, 78% of low-risk lesions were confined to the dermis (31/40), and 100% of high-risk lesions infiltrated into the sub-cutaneous tissue, resulting in a significant difference between the two groups (χ^2 = 10.951, P = 0.001). Ultrasound detected sub-clinical lesions in five patients. Conclusions: High-frequency ultrasound can provide important information for pre-operative evaluation of risk in BCC foci and reveal hidden lesions. The technique may play a crucial role in guiding therapeutic options for BCC.展开更多
文摘The purpose of this study is to characterize the re-epithelialization of wound healing in canine prostatic urethra and to evaluate the effect of this re-epithelialization way after two-micron laser resection of the prostate (TmLRP). TmLRP and partial bladder neck mucosa were performed in 15 healthy adult male crossbred canines. Wound specimens were harvested at 3 days, and 1, 2, 3, and 4 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin staining. The expression of cytokeratin 14 (CK14), CK5, CK18, synaptophysin (Syn), chromogranin A (CgA), uroplakin, transforming growth factor-β1 (TGF-β1), and TGF-β type Ⅱ receptor in prostatic urethra wound were examined by immunohistochemistry and real-time polymerase chain reaction, respectively. Van Gieson staining was performed to determine the expression of collagen fibers in prostatic urethra and bladder neck would. The results showed that the re-epithelialization of the prostatic urethra resulted from the mobilization of proliferating epithelial cells from residual prostate tissue under the wound. The proliferating cells expressed CK14, CK5, but not CK18, Syn, and CgA and re-epithelialize expressed uroplakin since 3 weeks. There were enhanced TGF-β1 and TGF-β type Ⅱ receptor expression in proliferating cells and regenerated cells, which correlated with specific phases of re-epithelialization. Compared with the re-epithelialization of the bladder neck, re-epithelialization of canine prostatic urethra was faster, and the expression of collagen fibers was relatively low. In conclusion, re-epithelialization in canine prostatic urethra resulted from prostate basal cells after TmLRP and this re-epithelialization way may represent the ideal healing method from anatomic repair to functional recovery after injury.
文摘Background: Due to advances in high-frequency ultrasound technology, it is easier to detect fine structures of skin lesions. The aim of this study was to examine the ultrasonographic features and use recurrence risk stratification to assess the diagnostic performance of pre-operative ultrasound examination of basal cell carcinoma (BCC). Methods: This was a retrospective study. Forty-six BCC lesions underwent pre-operative ultrasound examination using 50- and 20- MHz probes. Ultrasonographic shape, margin, internal echoes, hyper-echoic spots, posterior echoes, and depth of the lesion were evaluated and correlated with the risk of recurrence based on histological features. Results: Forty-two patients had 46 skin lesions in total. The high-risk (n = 6) and low-risk (n = 40) groups exhibited considerable overlap in the ultrasonographic manifestations and no significant difference in margin (χ^2 = 3.231, P = 0.072), internal echo (χ^2 = 1.592, P = 0.207), or posterior echo (P = 0.169). However, high-risk BCCs tended to be irregular in shape than low-risk lesions (χ^2 = 4.313, P = 0.038). Both types presented hyper-echoic spots (χ^2 = 1.850, P = 0.174). Additionally, 78% of low-risk lesions were confined to the dermis (31/40), and 100% of high-risk lesions infiltrated into the sub-cutaneous tissue, resulting in a significant difference between the two groups (χ^2 = 10.951, P = 0.001). Ultrasound detected sub-clinical lesions in five patients. Conclusions: High-frequency ultrasound can provide important information for pre-operative evaluation of risk in BCC foci and reveal hidden lesions. The technique may play a crucial role in guiding therapeutic options for BCC.