Soft conductive films composed of a silver nanowire(AgNW) network, a neutral-pH PEDOT:PSS overcoating layer and a polydimethylsiloxane(PDMS) elastomer substrate are fabricated by large area compatible coating pro...Soft conductive films composed of a silver nanowire(AgNW) network, a neutral-pH PEDOT:PSS overcoating layer and a polydimethylsiloxane(PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity,stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 x 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array.展开更多
Metsulfuron-methyl molecularly imprinted polymer(MIP)-coated stir bar was prepared for sorptive extraction of sulfonylurea herbicides in complex samples.The MIP-coating was about 21.3 μm thickness with the relative...Metsulfuron-methyl molecularly imprinted polymer(MIP)-coated stir bar was prepared for sorptive extraction of sulfonylurea herbicides in complex samples.The MIP-coating was about 21.3 μm thickness with the relative standard deviation(RSD) of 4.4%(n=10).It was homogeneous and porous with good thermal stability and chemical stability.The extraction capability of the MIP-coating was 2.8 times over that of the non-imprinted polymer(NIP)-coating in hexane.The MIP-coating exhibited selective adsorption ability to the template and its analogues.The extraction conditions,including extraction solvent,desorption solvent,extraction time,desorption time and stirring speed,were optimized.A method for the determination of six sulfonylurea herbicides by MIP-coated stir bar sorptive extraction coupled with high performance liquid chromatography(HPLC) was developed.The linear range was 10―200 μg/L and the detection limits were within a range of 2.0―3.3 μg/L.It was also applied to the analysis of sulfonylurea herbicides in spiked river water,soil and rice samples.展开更多
Based on a molecularly imprinted organic-silica hybrid-based stir bar, a pre-treatment methodology was devel- oped for enrichment of nicosulfuron in aqueous samples. The molecularly imprinted organic-silica hybrid-bas...Based on a molecularly imprinted organic-silica hybrid-based stir bar, a pre-treatment methodology was devel- oped for enrichment of nicosulfuron in aqueous samples. The molecularly imprinted organic-silica hybrid-based coating on the outer surface of a glass stir bar was prepared by in-situ polymerization using nicosulfuron as a template molecule, a-methacrylic acid as a functional monomer, methacryloxypropytrimethoxysilane as a cross-linker in the mixture of acetonitrile and trichloromethane (V/V, 7.5 : 1). To achieve the selective extraction of the target analyte from aqueous samples, several main parameters, including extraction time, pH value and contents of inor- ganic salt in the sample matrix were investigated. Evidence was also presented by the scanning electronic micro- scopic images of the imprinted and non-imprinted stir bars. Then, the extraction efficiency of the stir bar was tested with separate experiments and competitive sorption experiments. These results showed that using six sulfonylureas as substrates the molecularly imprinted organic-silica hybrid-based stir bar gave high selectivity for the template, nicosulfuron compared to the non-imprinted organic-silica hybrid-based stir bar. This sorption extraction was cou- pled to liquid chromatography ultraviolet detection allowing the determination of nicosulfuron from tap water. The method showed good recoveries and precision, 96.0% (RSD 2.7%, n=3) for tap water spiked with 0.125 nmol (25.00 mL sample), suggesting that the stir bar can be successfully applied to the pre-concentration of nicosulfuron in real aqueous samples.展开更多
基金supported by the Science and Technology Commission of Shanghai Municipality(No.16JC1400603)
文摘Soft conductive films composed of a silver nanowire(AgNW) network, a neutral-pH PEDOT:PSS overcoating layer and a polydimethylsiloxane(PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity,stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 x 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array.
基金Supported by the National Natural Science Foundation of China(Nos.21127008,21075140,21105133,90817012)the Key Program of Natural Science Foundation of Guangdong Province,China(No.9251027501000004)+1 种基金the Cooperation Project in Industry,Education and Research of Guangdong Province and Ministry of Education of China(No.2010B090400142)the Fundamental Research Funds for the Central Universities of China
文摘Metsulfuron-methyl molecularly imprinted polymer(MIP)-coated stir bar was prepared for sorptive extraction of sulfonylurea herbicides in complex samples.The MIP-coating was about 21.3 μm thickness with the relative standard deviation(RSD) of 4.4%(n=10).It was homogeneous and porous with good thermal stability and chemical stability.The extraction capability of the MIP-coating was 2.8 times over that of the non-imprinted polymer(NIP)-coating in hexane.The MIP-coating exhibited selective adsorption ability to the template and its analogues.The extraction conditions,including extraction solvent,desorption solvent,extraction time,desorption time and stirring speed,were optimized.A method for the determination of six sulfonylurea herbicides by MIP-coated stir bar sorptive extraction coupled with high performance liquid chromatography(HPLC) was developed.The linear range was 10―200 μg/L and the detection limits were within a range of 2.0―3.3 μg/L.It was also applied to the analysis of sulfonylurea herbicides in spiked river water,soil and rice samples.
基金Project supported by National High-tech R & D Program (863 program, No. 2007AA 10Z432) and the National Natural Science Foundation of China (No. 30871756 and 21175083).
文摘Based on a molecularly imprinted organic-silica hybrid-based stir bar, a pre-treatment methodology was devel- oped for enrichment of nicosulfuron in aqueous samples. The molecularly imprinted organic-silica hybrid-based coating on the outer surface of a glass stir bar was prepared by in-situ polymerization using nicosulfuron as a template molecule, a-methacrylic acid as a functional monomer, methacryloxypropytrimethoxysilane as a cross-linker in the mixture of acetonitrile and trichloromethane (V/V, 7.5 : 1). To achieve the selective extraction of the target analyte from aqueous samples, several main parameters, including extraction time, pH value and contents of inor- ganic salt in the sample matrix were investigated. Evidence was also presented by the scanning electronic micro- scopic images of the imprinted and non-imprinted stir bars. Then, the extraction efficiency of the stir bar was tested with separate experiments and competitive sorption experiments. These results showed that using six sulfonylureas as substrates the molecularly imprinted organic-silica hybrid-based stir bar gave high selectivity for the template, nicosulfuron compared to the non-imprinted organic-silica hybrid-based stir bar. This sorption extraction was cou- pled to liquid chromatography ultraviolet detection allowing the determination of nicosulfuron from tap water. The method showed good recoveries and precision, 96.0% (RSD 2.7%, n=3) for tap water spiked with 0.125 nmol (25.00 mL sample), suggesting that the stir bar can be successfully applied to the pre-concentration of nicosulfuron in real aqueous samples.