An integrated approach that considers the performance limitations of tracking control systems for air-breathing hypersonic vehicles is proposed. First, a set of ascent trajectories is obtained as candidates for tracki...An integrated approach that considers the performance limitations of tracking control systems for air-breathing hypersonic vehicles is proposed. First, a set of ascent trajectories is obtained as candidates for tracking control through a trajectory design method that considers the available acceleration. Second, the basic theory of performance limitations, which is adopted to calculate the limits on control performance through the trajectory, is integrated. The openloop dynamics of air-breathing hypersonic vehicles is responsible for these limits on the control system. Comprehensive specifications on stability, tracking accuracy, and robustness are derived, and the flight envelope with constraints and control specifications is identified. Simulation results suggest that trajectory design should consider restrictions on control performance to obtain reliable solutions.展开更多
A novel approach for improving antenna bandwidth is described using a 6-element Yagi-Uda array as an example. The new approach applies Central Force Optimization, a deterministic metaheuristic, and Variable Z0 technol...A novel approach for improving antenna bandwidth is described using a 6-element Yagi-Uda array as an example. The new approach applies Central Force Optimization, a deterministic metaheuristic, and Variable Z0 technology, a novel, proprietary design and optimization methodology, to produce an array with 33.09% fractional impedance bandwidth. This array’s performance is compared to its CFO-optimized Fixed Z0counterpart, and to the performance of a 6-ele- ment Dominating Cone Line Search-optimized array. Both CFO-optimized antennas exhibit better performance than the DCLS array, especially with respect to impedance bandwidth. Although the Yagi-Uda antenna was chosen to illustrate this new approach to antenna design and optimization, the methodology is entirely general and can be applied to any antenna against any set of performance objectives.展开更多
In a system based on the phase lock loop(PLL), a trade-off must be made between the tracking precision and the dynamic performance if constant parameters are adopted. To overcome this drawback, a new method called n...In a system based on the phase lock loop(PLL), a trade-off must be made between the tracking precision and the dynamic performance if constant parameters are adopted. To overcome this drawback, a new method called no phase slipping adaptive bandwidth(NPS-AB) is proposed, which can adjust the loop bandwidth adaptively for different working conditions. As a result, both the tracking precision and the dynamic performance can be achieved concurrently. NPS-AB has two features to keep the loop stable: one is the capability of quick response to dynamics; the other is a series of additional constraints when the bandwidth is switched. Compared with other methods, there is no phase slipping during the adjustment process for NPS-AB. The phase integer ambiguity can be avoided and the phase value is kept valid. It is meaningful for carrier ranging systems. Simulation results show that NPS-AB can deal with sudden dynamics and keep the pseudo-range value stable in the entire dynamic process.展开更多
This paper first revisits the previously proposed NSAD (New Self-Adapt DCF) mechanism. Some modifications are presented to further enhance the performance of NSAD in the error-prone environment. Then a new MAC mechani...This paper first revisits the previously proposed NSAD (New Self-Adapt DCF) mechanism. Some modifications are presented to further enhance the performance of NSAD in the error-prone environment. Then a new MAC mechanism is proposed that can realize bandwidth guarantee by assigning different self-adapt parameters to users at different priority levels. The bandwidth guarantee property of this new mechanism is analyzed and the high priority users are found to have bandwidth guaranteed even in heavy contention condition, which is proved true not only by theoretical analysis but also by simulation results. At the same time the new scheme keeps the self-adapt character of NSAD, so the overall system utilization is kept very high in heavy contention condition compared with the previously studied DCF-based QoS mechanisms.展开更多
基金supported by Aerospace Science and Technology Innovation Fund of China (No. CASC2016)Six Talent Peaks Project in Jiangsu Province of China (KTHY025)+3 种基金Funding of Jiangsu Innovation Program for Graduate Educationthe National Natural Science Foundation of China (Nos. 61403191, 11572149)the Funding of Jiangsu Innovation Program for Graduate Education of China (Nos. KYLX_0281, KYLX15_0318 and NZ2015205)the Fundamental Research Funds for the Central Universities of China
文摘An integrated approach that considers the performance limitations of tracking control systems for air-breathing hypersonic vehicles is proposed. First, a set of ascent trajectories is obtained as candidates for tracking control through a trajectory design method that considers the available acceleration. Second, the basic theory of performance limitations, which is adopted to calculate the limits on control performance through the trajectory, is integrated. The openloop dynamics of air-breathing hypersonic vehicles is responsible for these limits on the control system. Comprehensive specifications on stability, tracking accuracy, and robustness are derived, and the flight envelope with constraints and control specifications is identified. Simulation results suggest that trajectory design should consider restrictions on control performance to obtain reliable solutions.
文摘A novel approach for improving antenna bandwidth is described using a 6-element Yagi-Uda array as an example. The new approach applies Central Force Optimization, a deterministic metaheuristic, and Variable Z0 technology, a novel, proprietary design and optimization methodology, to produce an array with 33.09% fractional impedance bandwidth. This array’s performance is compared to its CFO-optimized Fixed Z0counterpart, and to the performance of a 6-ele- ment Dominating Cone Line Search-optimized array. Both CFO-optimized antennas exhibit better performance than the DCLS array, especially with respect to impedance bandwidth. Although the Yagi-Uda antenna was chosen to illustrate this new approach to antenna design and optimization, the methodology is entirely general and can be applied to any antenna against any set of performance objectives.
文摘In a system based on the phase lock loop(PLL), a trade-off must be made between the tracking precision and the dynamic performance if constant parameters are adopted. To overcome this drawback, a new method called no phase slipping adaptive bandwidth(NPS-AB) is proposed, which can adjust the loop bandwidth adaptively for different working conditions. As a result, both the tracking precision and the dynamic performance can be achieved concurrently. NPS-AB has two features to keep the loop stable: one is the capability of quick response to dynamics; the other is a series of additional constraints when the bandwidth is switched. Compared with other methods, there is no phase slipping during the adjustment process for NPS-AB. The phase integer ambiguity can be avoided and the phase value is kept valid. It is meaningful for carrier ranging systems. Simulation results show that NPS-AB can deal with sudden dynamics and keep the pseudo-range value stable in the entire dynamic process.
文摘This paper first revisits the previously proposed NSAD (New Self-Adapt DCF) mechanism. Some modifications are presented to further enhance the performance of NSAD in the error-prone environment. Then a new MAC mechanism is proposed that can realize bandwidth guarantee by assigning different self-adapt parameters to users at different priority levels. The bandwidth guarantee property of this new mechanism is analyzed and the high priority users are found to have bandwidth guaranteed even in heavy contention condition, which is proved true not only by theoretical analysis but also by simulation results. At the same time the new scheme keeps the self-adapt character of NSAD, so the overall system utilization is kept very high in heavy contention condition compared with the previously studied DCF-based QoS mechanisms.